Write/Graph Equations of Lines Pgs 180-183

Slope Intercept Form VS. Standard Form

EXAMPLE 1 Write an equation of a line from a graph

Write an equation of the line in slope-intercept form.

Solution

STEP 1 Find the slope. Choose two points on the graph of the line, (0, 4) and (3, -2).

$$m = \frac{4 - (-2)}{0 - 3} = \frac{6}{-3} = -2$$

STEP 2 Find the y-intercept. The line intersects the y-axis at the point (0, 4), so the y-intercept is 4.

STEP 3 Write the equation.

$$y = mx + b$$
 Use slope-intercept form.

$$y = -2x + 4$$
 Substitute -2 for m and 4 for b.

EXAMPLE 2 Write an equation of a parallel line

Write an equation of the line passing through the point (-1, 1) that is parallel to the line with the equation y = 2x - 3.

Solution

15

e

en ion **STEP 1** Find the slope m. The slope of a line parallel to y = 2x - 3 is the same as the given line, so the slope is 2.

STEP 2 Find the y-intercept b by using m = 2 and (x, y) = (-1, 1).

$$y = mx + b$$
 Use slope-intercept form.
 $1 = 2(-1) + b$ Substitute for x , y , and m .
 $3 = b$ Solve for b .

▶ Because m = 2 and b = 3, an equation of the line is y = 2x + 3.

Write an equation of the line passing through point (0, -1) that is parallel to the line with the equation y = -2x + 3.

EXAMPLE 3

Write an equation of a perpendicular line

Write an equation of the line j passing through the point (2, 3) that is perpendicular to the line k with the equation y = -2x + 2.

Solution

STEP 1 Find the slope m of line j. Line k has a slope of -2.

$$-2 \cdot m = -1$$
 The product of the slopes of \perp lines is -1 .

$$m = \frac{1}{2}$$
 Divide each side by -2 .

STEP 2 Find the y-intercept b by using $m = \frac{1}{2}$ and (x, y) = (2, 3).

$$y = mx + b$$
 Use slope-intercept form.

$$3 = \frac{1}{2}(2) + b$$
 Substitute for x, y, and m.

$$2 = b$$
 Solve for b .

▶ Because $m = \frac{1}{2}$ and b = 2, an equation of line j is $y = \frac{1}{2}x + 2$. You can check that the lines j and k are perpendicular by graphing, then using a protractor to measure one of the angles formed by the lines.

Write an equation of the line that passes through point P and is perpendicular to the line with the given equation.

$$P(-8, 0), 3x - 5y = 6$$

EXAMPLE 4

Write an equation of a line from a graph

GYM MEMBERSHIP The graph models the total cost of joining a gym. Write an equation of the line. Explain the meaning of the slope and the *y*-intercept of the line.

Solution

STEP 1 Find the slope.

$$m = \frac{363 - 231}{5 - 2} = \frac{132}{3} = 44$$

STEP 2 Find the y-intercept. Use the slope and one of the points on the graph.

$$y = mx + b$$
 Use slope-intercept form.

$$231 = 44 \cdot 2 + b$$
 Substitute for x, y, and m.

$$143 = b$$
 Simplify.

STEP 3 Write the equation. Because m = 44 and b = 143, an equation of the line is y = 44x + 143.

▶ The equation y = 44x + 143 models the cost. The slope is the monthly fee, \$44, and the *y*-intercept is the initial cost to join the gym, \$143.

What are other real life applications that you could use this method with?

Graph 3x + 4y = 12.

