9.4. Solve Polynomial Equations in Factored Form

Goal • Solve polynomial equations.

Your Notes

VOCABULARY	
Roots	-
Vertical motion model	-

ZERO-PRODUCT PROPERTY

Let a and b be real numbers. If ab = 0, then = 0or = 0.

Example 1 Use the zero-product property

Solve
$$(x - 5)(x + 4) = 0$$
.

Solution
$$(x-5)(x+4) = 0$$

$$= 0 Or = 0$$

$$x = or x = Solve for x.$$

The solutions of the equation are .

CHECK Substitute each solution into the original equation to check.

Your Notes

Example 2 Find the greatest common monomial factor

Factor out the greatest common monomial factor.

a.
$$16x + 40y$$

b.
$$6x^2 + 30x^3$$

Solution

a. The GCF of 16 and 40 is ____. The variables *x* and *y* have ______. So, the greatest common monomial factor of the terms is .

16x + 40y =____

b. The GCF of 6 and 30 is ____. The GCF of x^2 and x^3 is . So, the greatest common monomial factor of the terms is ____.

 $6x^2 + 30x^3 =$

Example 3 Solve an equation by factoring

Solve the equation.

a. $3x^2 + 15x = 0$

= 0

Original equation

Factor left side.

 $\underline{} = 0 \quad or \underline{} = 0 \quad Zero-product property$ x = or x = Solve for x.

The solutions of the equation are ______.

To use the zeroproduct property. you must write the equation so that one side is 0. For this reason, must be subtracted from each side of

the equation.

 $9b^2 = 24b$ b.

Original equation

Subtract from each side.

= 0

Factor left side.

_ = 0 or ____ = 0 Zero-product property

b = or b = Solve for b.

The solutions of the equation are .

Your Notes

Checkpoint Solve the equation.

1.
$$(x + 6)(x - 3) = 0$$

2.
$$(x - 8)(x - 5) = 0$$

Checkpoint Factor out the greatest common monomial factor.

3.
$$10x^2 - 24y^2$$

4.
$$3t^6 + 8t^4$$

The vertical motion model takes into account the effect of gravity but ignores other, less significant, factors such as air resistance.

VERTICAL MOTION MODEL

The height h (in feet) of a projectile can be modeled by $h = -16t^2 + vt + s$

where t is the _____ (in seconds) the object has been in the air, v is the (in feet per second), and s is the _____ (in feet).

Fountain A fountain sprays water into the air with an initial vertical velocity of 20 feet per second. After how many seconds does it land on the ground?

Solution

Step 1 Write a model for the water's height above ground.

$$h = -16t^2 + vt + s$$
 Vertical motion model $h = -16t^2 + __t + __$ $v = __$ and $s = __$ $h = -16t^2 + __$ Simplify.

Step 2 Substitute for h. When the water lands, its height above the ground is feet. Solve for t.

$$= -16t^2 +$$
 Substitute $_$ for h .

 $=$ Factor right side.

 or Zero-product property

 or Solve for t .

t = 0 means that before the water is sprayed, its height above the ground is 0 feet.

The solution

The water lands on the ground seconds after it is sprayed.

Checkpoint Complete the following exercises.

5. Solve
$$d^2 - 7d = 0$$
.

6. Solve $8b^2 = 2b$.

Homework

7. What If? In Example 4, suppose the initial vertical velocity is 18 feet per second. After how many seconds does the water land on the ground?