Goal • Multiply polynomials.

Your Notes

Remember that the

terms of (2a - 5)are 2a and -5. They are not 2a

and 5.

Example 1 Multiply a monomial and a polynomial

Find the product $3x^3(2x^3 - x^2 - 7x - 3)$.

Solution

$$3x^{3}(2x^{3} - x^{2} - 7x - 3)$$

$$= 3x^{3}(\underline{\hspace{1cm}}) - 3x^{3}(\underline{\hspace{1cm}}) - 3x^{3}(\underline{\hspace{1cm}}) - 3x^{3}(\underline{\hspace{1cm}})$$

$$= \underline{\hspace{1cm}} - \underline{\hspace{1cm}} - \underline{\hspace{1cm}} - \underline{\hspace{1cm}}$$

Example 2 Multiply polynomials vertically and horizontally

Find the product.

a.
$$(a^2 - 6a - 3)(2a - 5)$$
 b. $(3b^2 - 2b + 5)(5b - 6)$

b.
$$(3b^2 - 2b + 5)(5b - 6)$$

Solution

a. Vertical format:

Add products.

b. Horizontal format:

$$(3b^{2} - 2b + 5)(5b - 6)$$

$$= ____(5b - 6) - ____(5b - 6)$$

$$+ ___(5b - 6)$$

$$= ____$$

$$= ____$$

Your Notes

Checkpoint Find the product.

1.
$$2x^2(x^3 - 5x^2 + 3x - 7)$$

2.
$$(a^2 + 5a - 4)(2a + 3)$$

Example 3 Multiply binomials using the FOIL pattern

Find the product (2c + 7)(c - 9).

Solution

- **Checkpoint** Complete the following exercise.
 - 3. Find the product (m + 3)(5m 4).

Area The dimensions of a rectangle are x + 4 and x + 5. Write an expression that represents the area of the rectangle.

Solution

Area = length • width

= (____)(____)

CHECK Use a graphing calculator to check your answer. Graph

 $y_1 = \underline{\hspace{1cm}}$ and $y_2 =$ ____ in the same viewing window. The graphs _____, so the product of x + 4 and x + 5 is _____. Formula for area of a rectangle

Substitute for length and width.

Multiply binomials.

Combine like terms.

Checkpoint Complete the following exercise.

4. The dimensions of a rectangle are x + 3 and x + 11. Write an expression that represents the area of the rectangle.

Example 5 Solve a multi-step problem

Walkway You are making a a walkway around part of your swimming pool. The dimensions of the swimming pool and walkway are shown in the diagram.

- Write a polynomial that represents the area of the swimming pool.
- What is the area of the swimming pool if the walkway is 2 feet wide?

Solution

Step 1 Write a polynomial using the formula for the area of a rectangle. The length is . The width

is ____.

Area = ____ • ____

Step 2 Substitute for x and evaluate.

Area = ____ = ___

The area of the swimming pool is

Checkpoint Complete the following exercise.

5. Swimming Pool Your neighbor has a walkway around his entire pool as shown in the diagram. The width of the walkway is the same on every side. Write a polynomial that represents

the area of the pool. What is the area of the pool if the walkway is 3 feet wide?

Homework