Goal: Write the prime factorization of a number.

Vocabulary

\square
Composite number:

Prime factorization: \square
Factor tree: \square

Monomial:

Example 1 Writing Factors

A rectangle has an area of 18 square feet. Find all possible whole number dimensions of the rectangle.

1. Write 18 as a product of two whole numbers in all possible ways.
\square \square
\square
\square $=18$ \square

$$
\square=18
$$

The factors of 18 are \square .
2. Use the factors to find all rectangles with an area of 18 square feet that have whole number dimensions. Then label the given rectangles.

Write the prime factorization of 420.
One possible factor tree:

Write original number.
Write 420 as $10 \cdot \square$.
Write 10 as $\square \cdot \square$. Write \square as $\square \cdot 6$.
Write 6 as \square - \quad.

Another possible factor tree:

Write original number.
 $\square \cdot 10$.
Write 10 as \square -

Both trees give the same result: $420=\square$.
Answer: The prime factorization of 420 is \square .

Example 3 Factoring a Monomial

Factor the monomial $24 x^{4} y$.

$$
\begin{aligned}
24 x^{4} y & =\square \cdot x^{4} y \quad \text { Write } 24 \text { as } \square . \\
& =\square \cdot y \text { Write } x^{4} \text { as } \square .
\end{aligned}
$$

(v) Checkpoint Write all factors of the number.

1.28	2.48

Tell whether the number is prime or composite. If it is composite, write its prime factorization.

3. 97	4. 117

Factor the monomial.

5. $21 n^{5}$	6. $18 x^{2} y^{3}$

Goal: Find the greatest common factor of two or more numbers.

Vocabulary

Common factor:

Greatest common factor (GCF):

Relatively prime:

Example 1 Finding the Greatest Common Factor

Volunteers A high school asks for volunteers to help clean up local highways on one Saturday each month. The group of volunteers has 27 freshman, 18 sophomores, 36 juniors, and 45 seniors. What is the greatest number of groups that can be formed if each group is to have the same number of each type of student? How many freshman, sophomores, juniors, and seniors will be in each group?

Solution

Method 1 List the factors of each number. Identify the greatest number that is on every list.

Method 2 Write the prime factorization of each number. The GCF is the product of the prime factors.

Answer: The greatest number of groups that can be formed is \square
Each group will have $27 \div \square=\square$ freshman, $18 \div \square=\square$ sophomores, $36 \div \square=\square$ juniors, and $45 \div \square=\square$ seniors.

Checkpoint Find the greatest common factor of the numbers.

1. 54,81
2. $12,48,66$

Example 2 Identifying Relatively Prime Numbers

Find the greatest common factor of the numbers. Then tell whether the numbers are relatively prime.
a. 28,63
b. 42,55

Solution

a. List the factors of each number. Identify the greatest number that the lists have in common.

Factors of 28: \square
Factors of 63: \square
The GCF is \square So, the numbers \square relatively prime.
b. Write the prime factorization of each number.
\square
\square
The GCF is \square So, the numbers \square relatively prime.

Checkpoint Find the greatest common factor of the numbers. Then tell whether the numbers are relatively prime.

3. 30,49	$4.52,78$

Example 3 Finding the GCF of Monomials

Find the greatest common factor of $16 x^{2} y$ and $26 x^{2} y^{3}$. Solution

Factor the monomials. The GCF is the product of the common factors.

$$
\begin{aligned}
& 16 x^{2} y=\square \\
& 26 x^{2} y^{3}=\square
\end{aligned}
$$

Answer: The GCF is \square

Checkpoint Find the greatest common factor of the monomials.

5. $12 x^{3}, 18 x^{2}$	6. $40 x y^{3}, 24 x y$

Goal: Write equivalent fractions.

Vocabulary

Equivalent fractions:

Simplest form:

Equivalent Fractions

Words To write equivalent fractions, multiply or divide the numerator and the denominator by the same nonzero number.

Algebra For all numbers a, b, and c, where $b \neq 0$ and $c \neq 0$, $\frac{a}{b}=\frac{a \cdot c}{b \cdot c}$ and $\frac{a}{b}=\frac{a \div c}{b \div c}$.

Numbers $\frac{1}{3}=\frac{1 \cdot 2}{3 \cdot 2}=\frac{2}{6}$ $\frac{2}{6}=\frac{2 \div 2}{6 \div 2}=\frac{1}{3}$

Example 1 Writing Equivalent Fractions

Write two fractions that are equivalent to $\frac{6}{18}$.
Multiply or divide the numerator and the denominator by the
\square

$$
\begin{array}{ll}
\frac{6}{18}=\frac{6 \cdot 2}{18 \cdot 2}=\square \quad \text { Multiply numerator and denominator by } 2 . \\
\frac{6}{18}=\frac{6 \div 3}{18 \div 3}=\square \quad \text { Divide numerator and denominator by } 3 .
\end{array}
$$

Answer: The fractions \square and \square are equivalent to $\frac{6}{18}$.

Checkpoint Write two fractions that are equivalent to the given fraction.

1. $\frac{7}{14}$	2. $\frac{4}{16}$	3. $\frac{10}{25}$

Example 2 Writing a Fraction in Simplest Form

Write $\frac{8}{36}$ in simplest form.
Write the prime factorizations of the numerator and denominator.

$$
8=\square
$$

$$
36=\square
$$

The GCF of 8 and 36 is \square

Divide numerator and denominator by GCF.
$=\square$
Simplify.

Checkpoint Write the fraction in simplest form.

4. $\frac{3}{18}$	$5 . \frac{12}{32}$	6. $\frac{24}{42}$

Write $\frac{14 x^{2} y}{35 x^{3}}$ in simplest form.

Factor numerator and denominator.

$=\square$
Divide out common factors.

Simplify.
(V) Checkpoint Write the variable expression in simplest form.

7. $\frac{9 a}{15 a^{2}}$	8. $\frac{16 m n^{2}}{28 n}$	9. $\frac{39 s t^{2}}{3 s^{2} t}$

Goal: Find the least common multiple of two numbers.

Vocabulary

Multiple: \square
Common multiple: \square
Least common multiple (LCM):

Least common denominator (LCD):

Example 1 Finding the Least Common Multiple

Find the least common multiple of 6 and 14.

Solution

You can use one of two methods to find the LCM.
Method 1 List the multiples of each number. Identify the least number that is on both lists.

Multiples of 6: \square
Multiples of 14: \square 6 and 14 is Mult \square
Method 2 Find the common factors of the numbers.

Multiply all of the factors, using each common factor only once.

$$
\mathrm{LCM}=\square=\square
$$

Answer: Both methods get the same result. The LCM is \square

Find the least common multiple $\mathbf{6 x y}$ and $16 x^{2}$.

$$
\begin{aligned}
& 6 x y=\square \\
& 16 x^{2}=\square \\
& \mathrm{LCM}=\square=\square
\end{aligned}
$$

Answer: The least common multiple of $6 x y$ and $16 x^{2}$ is \square

Checkpoint Find the least common multiple of the numbers or the monomials.

1. 8,18	2. $4,5,15$
3. $12 x, 18 x^{2}$	4. $4 x y, 10 x z^{2}$

Example 3 Comparing Fractions Using the LCD

Summer Sports Last year, a summer resort had 165,000 visitors, including 44,000 water skiers. This year, the resort had 180,000 visitors, including 63,000 water skiers. In which year was the fraction of water skiers greater?

Solution

1. Write the fractions and simplify.

Last year: $\frac{\text { Number of water skiers }}{\text { Total number of visitors }}=\square=\square$
This year: $\frac{\text { Number of water skiers }}{\text { Total number of visitors }}=\square=\square$
2. Find the LCD of \square and \square . The LCM of \square and \square \square. So, the LCD of the fractions is \square.
3. Write equivalent fractions using the LCD.

Last year: $\square=\square=\square$
This year:

4. Compare the numerators: \square
\square

Answer: The fraction of water skiers was greater \square

Example 4 Ordering Fractions and Mixed Numbers

Order the numbers $4 \frac{5}{12}, \frac{9}{2}$, and $\frac{33}{8}$ from least to greatest.

1. Write the mixed number as an improper fraction.

$$
4 \frac{5}{12}=\frac{\square}{12}=\frac{\square}{12}
$$

2. Find the LCD of $\frac{\square}{12}, \frac{9}{2}$, and $\frac{33}{8}$. The LCM of 12,2 , and 8 is \square So, the LCD is \qquad
3. Write equivalent fractions using the LCD.

$$
\begin{aligned}
& \frac{\square}{12}=\frac{\square \cdot \square}{12 \cdot \square}=\square \quad \frac{9}{2}=\frac{9 \cdot \square}{2 \cdot \square}=\square \\
& \frac{33}{8}=\frac{33 \cdot \square}{8 \cdot \square}=\square
\end{aligned}
$$

4. Compare the numerators:
 and

Answer: From least to greatest, the numbers are

