

Goal: Classify special pairs of angles.

Vocabulary	
Complementary angles:	
Supplementary angles:	
Vertical angles:	

Example 1 Identifying Complementary, Supplementary Angles

In quadrilateral *PQRS*, identify all pairs of complementary angles and supplementary angles.

Solution

- **a.** Because $m \angle Q + m \angle R =$ + = , $\angle Q$ and $\angle R$ are argles.
- **b.** Because $m \angle P + m \angle Q = \square + \square = \square$, $\angle P$ and $\angle Q$ are \square angles.
- **c.** Because $m \angle R + m \angle S = [] + [] = []$, $\angle R$ and $\angle S$ are [] angles.

Checkpoint Tell whether the angles are complementary, supplementary, or neither.

2. ///∠3 – 42	3. $m \angle 5 = 127^{\circ}$
<i>m</i> ∠4 = 48°	<i>m</i> ∠6 = 53°
	<i>m</i> ∠4 = 48°

Checkpoint $\angle 1$ and $\angle 2$ are complementary angles. Given $m \angle 1$, find $m \angle 2$.

4. <i>m</i> ∠ 1 = 64°	5. <i>m</i> ∠1 = 13°
6. <i>m</i> ∠1 = 82°	7. <i>m</i> ∠1 = 7°

Goal: Identify angles when a transversal intersects lines.

Vocabulary	
Transversal:	
Corresponding angles:	
Alternate interior angles:	
Alternate exterior angles:	

Identifying Angles Example 1

In the diagram, line <i>t</i> is a transversal. Tell whether the angles are corresponding, alternate interior, or alternate exterior angles.	m $n1 2 5 63 4 7 8 t$
a. \angle 1 and \angle 5	
b. \angle 2 and \angle 7	$\downarrow \downarrow$
c. \angle 3 and \angle 6	
Solution	
a. \angle 1 and \angle 5 are	angles.
b. \angle 2 and \angle 7 are	angles.
c. \angle 3 and \angle 6 are	angles.

Checkpoint In Example 1, tell whether the angles are corresponding, alternate interior, or alternate exterior angles.

1. \angle 4 and \angle 5	2. \angle 1 and \angle 8	3. \angle 4 and \angle 8

Goal: Find measures of interior and exterior angles.

Vocabulary		
Interior angle:		
Exterior angle:		

Measures of Interior Angles of a Convex Polygon

The sum of the measures of the interior angles of a convex *n*-gon is given by the formula $(n - 2) \cdot 180^{\circ}$.

The measure of an interior angle of a regular *n*-gon is given by the formula $\frac{(n-2)\cdot 180^{\circ}}{n}$

Find the sum of the measures of the interior angles of the polygon.

Solution

For a convex hexagon, n =

$$(n-2) \cdot \mathbf{180}^{\circ} = (\boxed{-2}) \cdot \mathbf{180}^{\circ}$$
$$= \boxed{\cdot \mathbf{180}^{\circ}}$$
$$= \boxed{-2} \cdot \mathbf{180}^{\circ}$$

3. In Example 3, find $m \angle 2$, $m \angle 3$, $m \angle 4$, and $m \angle 5$.

Goal: Translate figures in a coordinate plane.

Draw $\triangle ABC$ with vertices A(-2, 1), B(-1, 4), and C(0, 1). Then find the coordinates of the vertices of the image after the translation $(x, y) \rightarrow (x + 4, y - 5)$, and draw the image.

Solution

1. Draw quadrilateral *PQRS* with vertices P(-4, -1), Q(-1, 0), R(-2, -3), and S(-4, -4). Then find the coordinates of the image after the translation $(x, y) \rightarrow (x + 6, y + 5)$, and draw the image.

Creating Tessellations Example 3 Tell whether you can create a tessellation using only translations of the given polygon. If you can, create a tessellation. If not, explain why not. a. b. Solution translate a translate the a. You **b.** You regular octagon to create a rectangle to create a tessellation. Notice in the tessellation. Notice in the design that there design that there gaps and overlaps. gaps or overlaps.

Goal: Reflect figures and identify lines of symmetry.

	Vocabulary		
	Reflection:		
	Line of reflection:		
	_ine symmetry:		
	-ine of symmetry:		
L		_	
In a reflection, a figure and its image are congruent.	n a reflection, a figure and its image are congruent. Example 1 Identifying Reflections Tell whether the transformation is a reflection. If so, identify the line of reflection.		
	a. $\int y$ b. $\int y$ c. $\int y$ c. $\int y$ c. $\int y$ c. $\int y$ c. $\int y$ c. $\int y$ c.		
	Solution		
	a.		
	0.		
	C.		

Example 2 Reflecting a Triangle

Draw $\triangle ABC$ with vertices A(2, 2), B(2, 5), and C(4, 1). Then find the coordinates of the vertices of the image after a reflection in the *x*-axis, and draw the image.

Solution

First draw riangle ABC. Then, to reflect riangle ABC in the *x*-axis, multiply the

y-coordinate of each vertex by

Finally, draw $\triangle A'B'C'$.

1. Draw $\triangle ABC$ with vertices A(-4, -3), B(-4, 4), and C(-1, -3). Then find the coordinates of the vertices of the image of $\triangle ABC$ after a reflection in the *y*-axis, and draw the image.

Example 3 Identifying Lines of Symmetry

Draw the lines of symmetry on the figure. Tell how many lines of symmetry the figure has.

Checkpoint Draw the lines of symmetry on the figure. Tell how many lines of symmetry the figure has.

Goal: Rotate figures and identify rotational symmetry.

	Vocabulary
	Rotation:
	Center of rotation:
	Angle of rotation:
	Rotational symmetry:
	Example 1 Identifying Rotations
In a rotation, a figure and its image are congruent.	 Tell whether the transformation is a rotation about the origin. If so, give the angle and direction of the rotation.
	a. y f b. y f c. y f
	Solution
	a.
	b.
	c.

90° Rotations

In this lesson, all rotations in the coordinate plane are centered at the origin. You can use coordinate notation to describe a 90° rotation of a figure about the origin.

Example 2 Rotating a Triangle

Draw $\triangle ABC$ with vertices A(1, 1), B(3, 4), and C(4, 0). Then find the coordinates of the vertices of the image after a 90° clockwise rotation, and draw the image.

Solution

First draw $\triangle ABC$. Then, to rotate $\triangle ABC$ 90° clockwise, switch the coordinates and multiply the new *y*-coordinate by -1.

1. Draw $\triangle ABC$ with vertices A(1, -1), B(3, -1), and C(4, -4). Then find the coordinates of the vertices of the image after a 90° counterclockwise rotation, and draw the image.

Example 3 Rotating a Triangle

Draw $\triangle MNP$ with vertices M(-4, -4), N(-3, -1), and P(-1, -2). Then find the coordinates of the vertices of the image after a 180° rotation, and draw the image.

Solution

First draw $\triangle MNP$. Then, to rotate $\triangle MNP$ 180°, multiply the coordinates by -1.

Finally, draw $\triangle M'N'P'$.

Example 4 Identifying Rotational Symmetry

Tell whether the figure has rotational symmetry. If so, give the angle and direction of rotation.

3-

-1-

0

-2--3 $2 \ 3 \ 4 \ x$

Goal: Dilate figures in a coordinate plane.

	Vocabulary
	Dilation:
	Center of dilation:
	Scale factor:
l	
In a dilation, a figure and its image are similar. Regardless of the value of k ($k > 0$), a point and its image after a dilation are in the same quadrant(s).	Dilation In this lesson, the origin of the coordinate plane is the center of dilation. In the diagram, $\overline{A'B'}$ is the image of \overline{AB} after a dilation. Because $\frac{A'B'}{AB} = 2$, the scale factor is \Box . You can describe a dilation with respect to the origin using the notation $(x, y) \rightarrow (kx, ky)$ where k is the \Box .
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Example 1 Dilating a Quadrilateral

Draw quadrilateral with vertices A(-4, 1), B(1, 3), C(1, -1), and D(-3, -1). Then find the coordinates of the vertices of the image after a dilation having a scale factor of 2, and draw the image.

Solution

First draw quadrilateral *ABCD*. Then, to dilate *ABCD*, multiply the x- and y-coordinates of each vertex by [.

Summary Transformations in a Coordinate Plane	
Translations	
In a translation, each point of a figure is moved	
the in the . < 0	\xrightarrow{x}
$(x, y) \rightarrow$	
Reflections	
In a reflection, a figure is over a line.	
Reflection in x-axis: $(x, y) \rightarrow$ $a \neq b \neq c$ Reflection in y-axis (shown): $(x, y) \rightarrow$ $c \neq c$	x
Rotations	
In a rotation, a figure is turned about the origin	1 1 1
through a given and .	\xrightarrow{x}
90° clockwise rotation (shown): $(x, y) \rightarrow$	>
90° counterclockwise rotation: $(x, y) \rightarrow$	
180° rotation: $(x, y) \rightarrow$	
Dilations Ay	
In a dilation, a figure or	
with respect to the origin.	
$(x, y) \rightarrow$, where <i>k</i> is the .	x

12 Words to Review

Give an example of the vocabulary word.

Complementary angles	Supplementary angles
Vertical angles	Transversal
Corresponding angles	Alternate interior angles
Alternate exterior angles	Interior angle
Exterior angle	Transformation

Image	
-------	--

Translation

Review your notes and Chapter 12 by using the Chapter Review on pages 728-731 of your textbook.