Goal: Classify special pairs of angles.

Vocabulary

Complementary angles: \square
Supplementary angles: \square
Vertical angles:

Example 1 Identifying Complementary, Supplementary Angles

In quadrilateral $P Q R S$, identify all pairs of complementary angles and supplementary angles.

Solution

a. Because $m \angle Q+m \angle R=\square+\square=\square, \angle Q$ and $\angle R$ are \square angles.
b. Because $m \angle P+m \angle Q=\square+\square=\square, \angle P$ and $\angle Q$ are \square angles.
c. Because $m \angle R+m \angle S=\square+\square=\square, \angle R$ and $\angle \mathrm{S}$ are \square angles.

Checkpoint Tell whether the angles are complementary, supplementary, or neither.

1. $m \angle 1=37^{\circ}$	2. $m \angle 3=42^{\circ}$	3. $m \angle 5=127^{\circ}$
$m \angle 2=73^{\circ}$	$m \angle 4=48^{\circ}$	$m \angle 6=53^{\circ}$

Adjacent angles that form a right angle are complementary.
Adjacent angles that form a straight angle are supplementary.

Example 2 Finding an Angle Measure

For the diagram shown, $\angle 1$ and $\angle 2$ are complementary angles, and $m \angle 1=46^{\circ}$. Find $m \angle 2$.

Solution

$$
\begin{aligned}
& m \angle 1+m \angle 2=\square \\
& \square+m \angle 2=\square \\
& m \angle 2=\square \\
& \text { Sefinition of complementary a } \\
& \text { Substitute for } m \angle 1 . \\
& \text { Subtract } \square \text { from each side. }
\end{aligned}
$$

Checkpoint $\angle 1$ and $\angle 2$ are complementary angles. Given $m \angle 1$, find $m \angle 2$.

4. $m \angle 1=64^{\circ}$	5. $m \angle 1=13^{\circ}$
6. $m \angle 1=82^{\circ}$	7. $m \angle 1=7^{\circ}$

For the diagram shown, $m \angle 1=65^{\circ}$.
Find $m \angle 2, m \angle 3$, and $m \angle 4$.

Solution

a. $m \angle 1+m \angle 2=\square \quad \angle 1$ and $\angle 2$ are supplementary.
$\square+m \angle 2=\square$
Substitute for $m \angle 1$.
$m \angle 2=\square$
Subtract \square from each side.
b. $m \angle 3=\square$

Vertical angles have same measure.
$m \angle 3=\square$
Substitute for $m \angle 1$.
c. $m \angle 4=\square$

Vertical angles have same measure.
$m \angle 4=\square$
Substitute for $m \angle 2$.

Checkpoint

8. $\angle 1$ and $\angle 2$ are supplementary angles, and $m \angle 1=132^{\circ}$.
Find $m \angle 2$.
9. $\angle 3$ and $\angle 4$ are supplementary angles, and $m \angle 3=23^{\circ}$.
Find $m \angle 4$.
10. In Example 3, suppose that $m \angle 1=54^{\circ}$. Find $m \angle 2, m \angle 3$, and $m \angle 4$. Angles and Parallel Lines

Goal: Identify angles when a transversal intersects lines.

Vocabulary
Transversal: \square
Corresponding angles:

Alternate interior angles:

Alternate exterior angles:

Example 1 Identifying Angles

In the diagram, line t is a transversal. Tell whether the angles are corresponding, alternate interior, or alternate exterior angles.
a. $\angle 1$ and $\angle 5$
b. $\angle 2$ and $\angle 7$

c. $\angle 3$ and $\angle 6$

Solution

a. $\angle 1$ and $\angle 5$ are \square angles.
b. $\angle 2$ and $\angle 7$ are \square angles.
c. $\angle 3$ and $\angle 6$ are \square angles.
(.) Checkpoint In Example 1, tell whether the angles are corresponding, alternate interior, or alternate exterior angles.

1. $\angle 4$ and $\angle 5$	2. $\angle 1$ and $\angle 8$	3. $\angle 4$ and $\angle 8$

Angles and Parallel Lines

In the diagram, transversal t intersects parallel lines m and n.
Corresponding angles
$m \angle 1=\square$
$m \angle 2=\square$
$m \angle 3=\square$
$m \angle 4=\square$

Alternate interior angles
$m \angle 3=\square$
$m \angle 4=\square$
Alternate exterior angles
$m \angle 1=\square$
$m \angle 2=\square$

In the diagram, transversal t intersects parallel lines m and n. If $m \angle 1=100^{\circ}$, find the measures of the other numbered angles.

Solution

$m \angle 5=\square$, because $\angle 1$ and $\angle 5$ are \square, because $\angle 4$ and $\angle 5$ are \square angles.
$m \angle 4=\square$ angles.
$m \angle 8=\square$, because $\angle 1$ and $\angle 8$ are \square angles. angles.
$m \angle 2=\square$, because $\angle 1$ and $\angle 2$ are \square angles.
$m \angle 6=\square$, because $\angle 2$ and $\angle 6$ are \square angles. angles.
$m \angle 3=\square$, because $\angle 3$ and $\angle 6$ are $\square \angle 2$ and $\angle 7$ are \square
$m \angle 7=\square$
Checkpoint
4. In Example 2, if $m \angle 2=85^{\circ}$, find the measures of the other angles.

If a transversal intersects two lines so that the corresponding angles have the same measure, then the lines are parallel.

Example 3 Finding the Value of a Variable

Find the value of x that makes
lines m and n parallel.

Solution

The labeled angles in the diagram are
 corresponding angles. Lines m and n are \square when the measures are \square.

Set measures equal.
$\square=\square$ Subtract \square from each side.
$x=\square \quad$ Divide each side by \square Angles and Polygons

Goal: Find measures of interior and exterior angles.

Vocabulary
Interior angle:

Exterior angle:

Measures of Interior Angles of a Convex Polygon

The sum of the measures of the interior angles of a convex n-gon is given by the formula $(n-2) \cdot 180^{\circ}$.

The measure of an interior angle of a regular n-gon is given by the formula $\frac{(n-2) \cdot 180^{\circ}}{n}$.

Example 1 Finding the Sum of a Polygon's Interior Angles

Find the sum of the measures of the interior angles of the polygon.

Solution

For a convex hexagon, $n=\square$.

$$
\begin{aligned}
(n-2) \cdot 180^{\circ} & =(\square-2) \cdot 180^{\circ} \\
& =\square \cdot 180^{\circ} \\
& =\square
\end{aligned}
$$

Find the measure of an interior angle of a regular octagon.

Solution

For a regular octagon, $n=8$.
Measure of an interior angle $=\square$ Write formula.
$=\square$ Substitute for n.

$$
=\square
$$

Simplify.

(Checkpoint

1. Find the sum of the measures of the interior angles of a convex 9-gon.
2. Find the measure of an interior angle of a regular 18-gon.

An interior angle and an exterior angle at the same vertex form a straight angle.

Example 3 Finding the Measure of an Exterior Angle

Find $m \angle 1$ in the diagram.

Solution

The angle that measures \square forms a straight angle with $\angle 1$, which is the exterior angle at the same vertex.
 Angles are supplementary.

Subtract \square from each side.
3. In Example 3, find $m \angle 2, m \angle 3, m \angle 4$, and $m \angle 5$.

Each vertex of a convex polygon has two exterior angles. If you draw one exterior angle at each vertex, then the sum of the measures of these angles is 360°.

Example 4 Using the Sum of Measures of Exterior Angles

Find the unknown angle measure in the diagram.

Solution

$$
\begin{aligned}
& x^{\circ}+77^{\circ}+101^{\circ}+132^{\circ}=\square \\
& x+\square=\square \\
& \text { exterior angles of a } \\
& \text { convex polygon is } 360^{\circ} . \\
& \text { Add. }
\end{aligned}
$$

Answer: The angle measure is \square

Checkpoint

4. Five exterior angles of a convex hexagon have measures $42^{\circ}, 78^{\circ}$, $60^{\circ}, 55^{\circ}$, and 62°. Find the measure of the sixth exterior angle.

Goal: Translate figures in a coordinate plane.

Vocabulary

Transformation: \square
Image: \square

Translation:

In a translation, a figure and its image are congruent.

Example 1 Describing a Translation

For the diagram shown, describe the translation in words. Solution

Think of moving horizontally and vertically from a point on the original figure to the corresponding point on the new figure. For instance, you move \square units to the \square
 to reach A^{\prime} \qquad

Coordinate Notation

You can describe a translation of each point (x, y) of a figure using the coordinate notation

$$
(x, y) \rightarrow(x+a, y+b)
$$

where a indicates how many units a point moves horizontally, and b indicates how many units a point moves \qquad Move the point (x, y) to the right if a is positive and to the \square if a is \qquad Move the point up if b is positive and \square if b is \square

Example 2 Translating a Figure

Draw $\triangle A B C$ with vertices $A(-2,1), B(-1,4)$, and $C(0,1)$. Then find the coordinates of the vertices of the image after the translation $(x, y) \rightarrow(x+4, y-5)$, and draw the image.

Solution

First draw $\triangle A B C$. Then, to translate $\triangle A B C$, \square to the x-coordinate and \square from the y-coordinate of each vertex.
Original Image

$$
\begin{array}{ll}
(x, y) & \rightarrow(x+4, y-5) \\
A(-2,1) & \rightarrow A^{\prime} \square \\
B(-1,4) & \rightarrow B^{\prime} \square \\
C(0,1) & \rightarrow C^{\prime} \square
\end{array}
$$

Finally, draw $\triangle A^{\prime} B^{\prime} C^{\prime}$. Notice that each
 point on $\triangle A B C$ moves \square units to the
\square

1. Draw quadrilateral $P Q R S$ with vertices $P(-4,-1), Q(-1,0)$, $R(-2,-3)$, and $S(-4,-4)$. Then find the coordinates of the image after the translation $(x, y) \rightarrow(x+6, y+5)$, and draw the image.

Example 3 Creating Tessellations

Tell whether you can create a tessellation using only translations of the given polygon. If you can, create a tessellation. If not, explain why not.
a.

b.

Solution

a. You \square translate a regular octagon to create a tessellation. Notice in the design that there \qquad gaps and overlaps.

b. You \square translate the rectangle to create a tessellation. Notice in the design that there gaps or overlaps.

Goal: Reflect figures and identify lines of symmetry.

Vocabulary

\square
Line of reflection: \square
Line symmetry: \qquad
Line of symmetry:

In a reflection, a figure and its image are congruent.

Example 1 Identifying Reflections

Tell whether the transformation is a reflection. If so, identify the line of reflection.
a.

b.

C.

Solution

a. \square
b. \square
c. \qquad

Coordinate Notation

You can use coordinate notation to describe the images of figures after reflections in the axes of a coordinate plane.

Reflection in the x-axis

Multiply the y-coordinate by -1 . Multiply the x-coordinate by -1 .

$$
(x, y) \rightarrow \square
$$

Reflection in the y-axis

\square

Example 2 Reflecting a Triangle

Draw $\triangle A B C$ with vertices $A(2,2), B(2,5)$, and $C(4,1)$. Then find the coordinates of the vertices of the image after a reflection in the x-axis, and draw the image.

Solution

First draw $\triangle A B C$. Then, to reflect $\triangle A B C$ in the x-axis, multiply the y-coordinate of each vertex by \square .

Original		Image
(x, y)	\rightarrow	\square
$A(2,2)$	\rightarrow	$A^{\prime} \square$
$B(2,5)$	\rightarrow	$B^{\prime} \square$
$C(4,1)$	\rightarrow	$C^{\prime} \square$

Finally, draw $\triangle A^{\prime} B^{\prime} C^{\prime}$.

1. Draw $\triangle A B C$ with vertices $A(-4,-3), B(-4,4)$, and $C(-1,-3)$.

Then find the coordinates of the vertices of the image of $\triangle A B C$ after a reflection in the y-axis, and draw the image.

Example 3 Identifying Lines of Symmetry

Draw the lines of symmetry on the figure. Tell how many lines of symmetry the figure has.
a.

b.

c.

Checkpoint Draw the lines of symmetry on the figure. Tell how many lines of symmetry the figure has.

Rotations and Symmetry

Goal: Rotate figures and identify rotational symmetry.

Vocabulary

\square
Center of rotation: \square

Angle of rotation:

Rotational symmetry:

In a rotation, a figure and its image are congruent.

Example 1 Identifying Rotations

Tell whether the transformation is a rotation about the origin. If so, give the angle and direction of the rotation.
a.

b.

C.

Solution

a. \square
b. \qquad
c. \square

$\mathbf{9 0}^{\circ}$ Rotations

In this lesson, all rotations in the coordinate plane are centered at the origin. You can use coordinate notation to describe a 90° rotation of a figure about the origin.
90° clockwise rotation

Switch the coordinates, then multiply the new y-coordinate by -1 .

$$
(x, y) \rightarrow \square
$$

90° counterclockwise rotation

Switch the coordinates, then multiply the new x-coordinate by -1 .

$$
(x, y) \rightarrow \square
$$

Example 2 Rotating a Triangle

Draw $\triangle A B C$ with vertices $A(1,1), B(3,4)$, and $C(4,0)$. Then find the coordinates of the vertices of the image after a 90° clockwise rotation, and draw the image.

Solution

First draw $\triangle A B C$. Then, to rotate $\triangle A B C 90^{\circ}$ clockwise, switch the coordinates and multiply the new y-coordinate by -1 .

Finally, draw $\triangle A^{\prime} B^{\prime} C^{\prime}$.

1. Draw $\triangle A B C$ with vertices $A(1,-1), B(3,-1)$, and $C(4,-4)$. Then find the coordinates of the vertices of the image after a 90° counterclockwise rotation, and draw the image.

		A								
	4									
	3									
	3									
	2									
	1									
-2	0			2	,	3	4			$6 x$
			1	2	-	3	4	5		$6 x$
	-									
	-3									
		\downarrow								

180° Rotations

To rotate a point 180° about the origin, multiply each coordinate by -1 . The image is the same whether you rotate the figure
\square

$$
(x, y) \rightarrow \square
$$

Draw $\triangle M N P$ with vertices $M(-4,-4), N(-3,-1)$, and $P(-1,-2)$. Then find the coordinates of the vertices of the image after a 180° rotation, and draw the image.

Solution

First draw $\triangle M N P$. Then, to rotate $\triangle M N P 180^{\circ}$, multiply the coordinates by -1 .

Original		Image
(x, y)	\rightarrow	\square
$M(-4,-4)$	\rightarrow	$M^{\prime} \square$
$N(-3,-1)$	\rightarrow	$N^{\prime} \square$
$P(-1,-2)$	\rightarrow	$P^{\prime} \square$

Finally, draw $\triangle M^{\prime} N^{\prime} P^{\prime}$.

Example 4 Identifying Rotational Symmetry

Tell whether the figure has rotational symmetry. If so, give the angle and direction of rotation.
a.

b.

C.

Solution

a. The figure \square rotational symmetry.
b. The figure \square rotational symmetry.
c. The figure \square
\square rotational symmetry.

Goal: Dilate figures in a coordinate plane.

Vocabulary

Dilation: \square
Center of dilation:

Scale factor: \square

In a dilation, a figure and its image are similar. Regardless of the value of $k(k>0)$, a point and its image after a dilation are in the same quadrant(s).

Dilation

In this lesson, the origin of the coordinate plane is the center of dilation.

In the diagram, $\overline{A^{\prime} B^{\prime}}$ is the image of $\overline{A B}$ after a dilation. Because $\frac{A^{\prime} B^{\prime}}{A B}=2$, the scale factor is \square. You can describe a dilation with respect to the origin using the notation

$$
(x, y) \rightarrow(k x, k y)
$$

where k is the \square

Draw quadrilateral with vertices $A(-4,1), B(1,3), C(1,-1)$, and $D(-3,-1)$. Then find the coordinates of the vertices of the image after a dilation having a scale factor of 2 , and draw the image.

Solution

First draw quadrilateral $A B C D$. Then, to dilate $A B C D$, multiply the x - and y-coordinates of each vertex by \qquad .

Notice in Example 1 that when $k>1$, the new figure is an enlargement of the original figure.

Finally, draw quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

Checkpoint

1. Draw $\triangle D E F$ with vertices $D(-3,2), E(1,2)$, and $F(1,-1)$. Then find the coordinates of the vertices of the image after a dilation having a scale factor of 3 , and draw the image.

Draw $\triangle P Q R$ with vertices $P(-8,4), Q(-6,6)$, and $R(-4,-2)$. Then find the coordinates of the vertices of the image after a dilation having a scale factor of 0.5 , and draw the image.

Solution

Draw $\triangle P Q R$. Then, to dilate $\triangle P Q R$, multiply the x - and y-coordinates of each vertex by \square .

Original		Image
(x, y)	\rightarrow	\square
$P(-8,4)$	\rightarrow	$P^{\prime} \square$
$Q(-6,6)$	\rightarrow	$Q^{\prime} \square$
$R(-4,-2)$	\rightarrow	$R^{\prime} \square$

Notice in Example 2 that when $k<1$, the new figure is a reduction of the original figure.

Finally, draw $\triangle P^{\prime} Q^{\prime} R^{\prime}$.

Example 3 Finding a Scale Factor

Computer Graphics An artist uses a computer program to enlarge a design, as shown. What is the scale factor of the dilation?

Solution

The width of the original design is $\square=\square$ units. The width of the image is \square
\square units. So, the scale factor is $\frac{\square \text { units }}{\square}$ units, or \square.

Checkpoint

2. Given $\overline{C D}$ with endpoints $C(6,-9)$ and $D(-3,1)$, let $\overline{C^{\prime} D^{\prime}}$ with endpoints $C^{\prime}(2,-3)$ and $D^{\prime}\left(-1, \frac{1}{3}\right)$ be the image of $\overline{C D}$ after a dilation. Find the scale factor.

Summary

Transformations in a Coordinate Plane

Translations

In a translation, each point of a figure is moved the \square in the \qquad $(x, y) \rightarrow$ \square

Reflections

In a reflection, a figure is \square over a line.
Reflection in x-axis: $(x, y) \rightarrow \square$
Reflection in y-axis (shown): $(x, y) \rightarrow$ \square

Rotations

In a rotation, a figure is turned about the origin through a given \square and \square.
90° clockwise rotation (shown): $(x, y) \rightarrow \square$

90° counterclockwise rotation: $(x, y) \rightarrow$ \square
180° rotation: $(x, y) \rightarrow \square$

Dilations

In a dilation, a figure \square or \square with respect to the origin.
$(x, y) \rightarrow$ \qquad , where k is the \square
 Words to Review

Give an example of the vocabulary word.

Complementary angles
\square
Vertical angles

Corresponding angles

Alternate exterior angles

Exterior angle

Supplementary angles
\square
Transversal
\square
Alternate interior angles
\square
Interior angle
\square
Transformation

Image

Tessellation

Line symmetry, line of symmetry

Rotation, center of rotation, angle of rotation

Translation
\square
Reflection, line of reflection

Rotational symmetry

Dilation, center of dilation, scale factor

Review your notes and Chapter 12 by using the Chapter Review on pages 728-731 of your textbook.

