Square Roots

Goal: Find and approximate square roots of numbers.

Vocabulary

Square root:

Perfect square:

Example 1 Finding a Square Root

Playground A community is building a playground on a square plot of land with an area of 625 square yards. What is the length of each side of the plot of land?

Solution

The plot of land is a square with an area of 625 square yards, so the length of each side of the plot of land is the

Because length cannot be negative, it doesn't make sense to find the negative square root.
\square
Answer: The length of each side of the plot of land is \square

$$
\sqrt{625}=\square \text { because } \square=625 .
$$

Checkpoint Find the square roots of the number.

1. 9	2. 49	3. 169	4. 196

Approximate $\sqrt{\mathbf{2 8}}$ to the nearest integer.
The perfect square closest to, but less than, 28 is \square The perfect square closest to, but greater than, 28 is \square So, 28 is between \square and \square. This statement can be expressed by the compound inequality $\square<28<\square$.

< $28<$ \square

$<\sqrt{28}<$ \square
Identify perfect squares closest to 28.
Take positive square root of each number.
\square $<\sqrt{\mathbf{2 8}}<$ \square Evaluate square root of each perfect square. Answer: Because 28 is closer to \square than to \qquad , $\sqrt{\mathbf{2 8}}$ is closer to \square than to . So, to the nearest integer, $\sqrt{\mathbf{2 8}} \approx$ \square

Checkpoint Approximate the square root to the nearest integer.

5. $\sqrt{46}$	6. $-\sqrt{125}$	7. $\sqrt{68.9}$	8. $-\sqrt{87.5}$

Example 3 Using a Calculator

Use a calculator to approximate $\sqrt{636}$. Round to the nearest tenth.

Keystrokes
2nd $[\sqrt{ }] 636$
1
) $=$

Display

Answer
\square

Checkpoint Use a calculator to approximate the square root. Round to the nearest tenth.

9. $\sqrt{6}$	10. $-\sqrt{104}$	$11 .-\sqrt{819}$	12. $\sqrt{1874}$

Example 4 Evaluating a Radical Expression

Evaluate $5 \sqrt{a^{2}-b}$ when $a=6$ and $b=27$.

$$
\begin{aligned}
5 \sqrt{a^{2}-b} & =\square & & \begin{array}{l}
\text { Substitute for } a \text { and for } b . \\
\text { Evaluate expression inside }
\end{array} \\
& =\square & & \begin{array}{l}
\text { radical symbol. }
\end{array} \\
& =\square & & \text { Evaluate square root. } \\
& =\square & & \text { Multiply. }
\end{aligned}
$$

Checkpoint Evaluate the expression when $a=16$ and $b=9$.

13. $-\sqrt{a+b}$	14. $\sqrt{b^{2}-2 a}$	15. $2 \sqrt{a b}$

Goal: Simplify radical expressions.

Vocabulary

\square

Product Property of Square Roots

Algebra

$\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$, where $a \geq 0$ and $b \geq 0$

Numbers

$$
\sqrt{9 \cdot 7}=\sqrt{9} \cdot \sqrt{7}=3 \sqrt{7}
$$

Example 1 Simplifying a Radical Expression

$\sqrt{150}=\square$
Factor using greatest perfect square factor.
$=\square$
Product property of square roots
$=\square$
Simplify.

Example 2 Simplifying a Variable Expression

$$
\begin{array}{rlrl}
\sqrt{\mathbf{1 8 t}}{ }^{2} & =\square & \begin{array}{l}
\text { Factor using greatest } \mathrm{p} \\
\text { square factor. }
\end{array} \\
& =\square & & \text { Product property of squ } \\
& =\square & & \text { Simplify. } \\
& =\square & & \text { Commutative property }
\end{array}
$$

Checkpoint Simplify the expression.

1. $\sqrt{75}$	2. $\sqrt{80}$	3. $\sqrt{24 r^{2}}$	4. $\sqrt{56 m^{2}}$

Quotient Property of Square Roots

Algebra

$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$, where $a \geq 0$ and $b>0$

Numbers

$\sqrt{\frac{11}{4}}=\frac{\sqrt{11}}{\sqrt{4}}=\frac{\sqrt{11}}{2}$

Example 3 Simplifying a Radical Expression

Checkpoint Simplify the expression.

5. $\sqrt{\frac{5}{9}}$	6. $\sqrt{\frac{21}{64}}$	7. $\sqrt{\frac{16 z}{49}}$	8. $\sqrt{\frac{32 y^{2}}{81}}$

The expression $\sqrt{\frac{h}{16}}$ gives the time (in seconds) it takes an object to fall h feet.
a. Write the expression in simplest form.
b. Find the length of time it takes for an object to fall 120 feet. Give your answer to the nearest tenth of a second.

Solution

a. $\sqrt{\frac{h}{16}}=\square \quad$ Quotient property of square roots

Answer: In simplest form, $\sqrt{\frac{h}{16}}=\square$.
b. $\frac{\sqrt{h}}{\square}=\square$ Substitute 120 for h.
\square Approximate using a calculator.
Answer: The length of time it takes for an object to fall 120 feet is about \square

Checkpoint

9. Find the length of time it takes for an object to fall 155 feet. Give your answer to the nearest tenth of a second.

Performing Operations on Square Roots

Goal: Perform operations on square roots.

Example 1 Multiplying and Dividing Radical Expressions

a. $\sqrt{12} \cdot \sqrt{2}=\sqrt{12 \cdot 2} \quad$ Product property of square roots

$$
\begin{aligned}
& =\square \\
& =\square \cdot \square \\
& =\square
\end{aligned}
$$

b. $\frac{\sqrt{18}}{\sqrt{10}}=\sqrt{\frac{\square}{\square}}$

$$
\begin{aligned}
& =\sqrt{\frac{\square}{\square}} \\
& =\frac{\sqrt{\square}}{\sqrt{\square}}
\end{aligned}
$$

$$
=\frac{\square}{\sqrt{\square}}
$$

$$
=\frac{\square}{\sqrt{\square}} \cdot \frac{\sqrt{\square}}{\sqrt{\square}}
$$

$$
=\frac{\square \sqrt{ } \square}{\square}
$$

Multiply.
Product property of square roots
Simplify.

Quotient property of square roots
Simplify.
Quotient property of square roots

Simplify.

Rationalize denominator.

Multiply and simplify.

Example 2 Adding and Subtracting Radical Expressions
a. $5 \sqrt{6}+3 \sqrt{2}-4 \sqrt{6}=$ \qquad $+3 \sqrt{2}$ Commutative property

$=(\square) \sqrt{ } \square+3 \sqrt{2}$	Distributive property
$=\square+3 \sqrt{2}$	Simplify.

b. $9 \sqrt{3}+\sqrt{12}=9 \sqrt{3}+\sqrt{\square \cdot \square}$

Factor using perfect square factor.

$$
=9 \sqrt{3}+\square \cdot \square
$$

Product property of square roots
$=9 \sqrt{3}+$ \square Simplify.
$=(\square) \sqrt{\square}$
$=\square$
Distributive property Simplify.

1. $\sqrt{12} \cdot \sqrt{6}$	2. $\frac{\sqrt{48}}{\sqrt{21}}$
3. $5 \sqrt{8}+6 \sqrt{2}$	$4.8 \sqrt{3}-3 \sqrt{11}-\sqrt{3}$

Example 3 Using Radical Expressions

Circular plate The expression $\sqrt{\frac{A}{3.14}}$ gives the radius (in centimeters) of a circular plate with area A (in square centimeters). About how much longer is the radius of a circular plate with an area of 628 square centimeters than the radius of a circular plate with an area of 157 square centimeters?

1. Find the radius when $A=628$.

$\sqrt{\frac{A}{3.14}}$	$=\sqrt{\square}$		Substitute \square
	$=\square$		for A.
	$=\square \cdot \sqrt{2}$		Divide.
	$=\square$	Product property of square roots	
Simplify.			

2. Find the radius when $A=157$.

$\sqrt{\frac{A}{3.14}}$	$=\sqrt{\square}$		Substitute \square for A.
	$=\square$		Divide.
	$=\square \cdot \sqrt{2}$		Product property of square roots
	$=\square$		Simplify.

3. Find the difference of the lengths.

Distributive property Simplify and approximate.

Answer about \square centimeters

Goal: Use the Pythagorean theorem to solve problems.

Vocabulary

Hypotenuse: \square
Legs:

Pythagorean Theorem

Words For any right triangle, the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse.
Algebra $a^{2}+b^{2}=c^{2}$

Example 1 Finding the Length of a Hypotenuse

A building's access ramp has a horizontal distance of 24 feet and a vertical distance of 2 feet. Find the length of the ramp to the nearest tenth of a foot.

$$
\begin{array}{rlrl}
a^{2}+b^{2} & =c^{2} & \text { Pythagorean theorem } \\
\square^{2}+\square^{2} & =c^{2} & \text { Substitute for } a \text { and for } b . \\
\square & =c^{2} & \text { Evaluate powers and add. } \\
\square & =c & \text { Take positive square root of each side. } \\
\square & \approx c & & \text { Simplify. }
\end{array}
$$

Answer: The length of the ramp is about \square feet.

Find the unknown length a in simplest form.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean theorem } \\
a^{2}+\square^{2} & =\square^{2} & & \text { Substitute. } \\
a^{2}+\square & =\square & & \text { Evaluate powers. } \\
a^{2} & =\square & & \text { Subtract } \square \text { from each side. } \\
a & =\square & & \text { Take positive square root of each side. } \\
a & =\square & & \text { Simplify. }
\end{aligned}
$$

Answer: The unknown length a is \square units.

(v) Checkpoint Find the unknown length. Write your answer in

 simplest form.1.

Converse of the Pythagorean Theorem

The Pythagorean theorem can be written in "if-then" form.
Theorem: If a triangle is a right triangle, then $a^{2}+b^{2}=c^{2}$.
If you reverse the two parts of the statement, the new statement is called the converse of the Pythagorean theorem.

Although not all converses of true statements are true,

Converse: If $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

Determine whether the triangle with the given side lengths is a right triangle.
a. $a=8, b=9, c=12$
b. $a=7, b=24, c=25$

Solution

a. $\quad a^{2}+b^{2}=c^{2}$

b. $\quad a^{2}+b^{2}=c^{2}$

\square

Answer:

Answer:

(Vheckpoint Determine whether the triangle with the given side lengths is a right triangle.

4. $a=12, b=9, c=15$	$5 . a=10, b=25, c=27$

Goal: Determine the sum of the measures of the angles of a triangle.

Vocabulary	
Acute triangle	
Right triangle	
Obtuse triangle	

Sum of the Measures of the Angles of a Triangle

The sum of the measures of the interior angles of a triangle is 180°.

$$
m \angle A+m \angle B+m \angle C=180^{\circ}
$$

Example 1 Finding an Angle Measure in a Triangle

Find the value of x.

Sum of angle measures is 180°. Add.
$x=\square \quad$ Subtract \square from each side.

Find the values of x, y, and z. Then classify all triangles in the diagram by their angle measures.

1. Write and solve an equation to find the value of x.
\square Sum of angle measures is 180°.

$X=$ \qquad
 Add.
Subtract \square from each side.
2. Write and solve an equation to find the value of y.
\square

The measure of a straight angle is 180°.
$y=$ \square
\square from each side.
3. Write and solve an equation to find the value of z.
\square
\square

$z=\square$ Sum of angle measures is 180°. Add.
Subtract \square from each side.
4.
 , so it is $a(n)$ \square triangle.
$\triangle B C D$ has \qquad , so it is an \square triangle.
The measure of $\angle B$ is $34^{\circ}+\square=\square$, so $\triangle A B C$ has
\square and is $a(n)$ \square triangle.

Checkpoint Complete the following exercise.

1. Find the values of x, y, and z. Then classify all triangles in the diagram by their angle measures.

\square

Goal: Compare and order real numbers.

Vocabulary

Irrational number:

Real numbers:

Example 1 Classifying Real Numbers

Number Decimal Form Decimal Type Type
a. $\frac{7}{10} \quad \frac{7}{10}=\square \quad \square$
b. $\frac{2}{9} \quad \frac{2}{9}=\square=\square \quad \square$

The square root of any whole number that is not a perfect square is irrational.
c. $\sqrt{5}$ $\sqrt{5}=\square$ \square
\square

Example 2 Comparing Real Numbers

Copy and complete $\sqrt{3}$? $\frac{6}{5}$ using $<,>$, or $=$.

Solution

Graph $\sqrt{3}$ and $\frac{6}{5}$ on a number line.

$\sqrt{3}$ is to the \square of $\frac{6}{5}$.

Answer: $\sqrt{3} \square \frac{6}{5}$

Use a number line to order the numbers $\frac{\sqrt{6}}{2},-2.2, \frac{5}{2}$, and $-2 \sqrt{2}$ from least to greatest.

Graph the numbers on a number line and read them from left to right.

Answer: From least to greatest, the numbers are

Checkpoint Tell whether the number is rational or irrational.

1. $\frac{8}{11}$	2. $\sqrt{7}$	3. $\sqrt{49}$	4. $\sqrt{\frac{2}{5}}$

Copy and complete the statement using $<,>$, or $=$.

5. $-\frac{3}{2} \underline{?}-\sqrt{3}$	6. $\sqrt{10} \underline{?} 3.5$

7. $5.9,3 \sqrt{5}, \frac{27}{5}, \sqrt{35}$

8. $-\sqrt{21},-4.6,-\frac{9}{2},-2 \sqrt{5}$

Example 4 Using Irrational Numbers

Speed After an accident, a police officer finds that the length of a car's skid marks is 98 feet. The car's speed s (in miles per hour) and the length ℓ (in feet) of the skid marks are related by $s=\sqrt{27 \ell}$. Find the car's speed to the nearest tenth of a mile per hour.

Solution

$$
\begin{aligned}
s & =\sqrt{27 \ell} & & \text { Write formula. } \\
& =\sqrt{27 \cdot \square} & & \text { Substitute value. } \\
& =\sqrt{\square} & & \text { Multiply. } \\
& \approx \square & & \text { Approximate using a calculator. }
\end{aligned}
$$

Answer: The car's speed was about \square miles per hour.

Approximating Irrational Numbers

Goal: Use rational approximations to approximate and compare irrational numbers.

Vocabulary

Square root: \square
Perfect square: \square
Irrational number:

Example 1 Approximating an Irrational Number

Approximate $\sqrt{\mathbf{1 0}}$ to the nearest tenth.
Create a table of numbers whose squares are close to 10.

Number	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Square	\square	\square	\square	\square

The table shows that 10 is between the perfect squares \square and \square \square. So, $\sqrt{10}$ is between \qquad and \square

Create a table of numbers between 3 and 4 whose squares are close to 10.

Number	3.1	3.2	3.3	3.4
Square	\square	\square		\square

The average of \qquad and \square
\square and $(\square)^{2}=$ \square Because
 $10, \sqrt{10}$ is closer to \square than to \square.

Answer So, $\sqrt{\mathbf{1 0}} \approx$ \square

1. $\sqrt{32}$
2. $-\sqrt{23}$

Example 2 Comparing Irrational Numbers

Copy and complete $3 \sqrt{3} \underline{?} 2 \sqrt{7}$ using $<$, $>$, or $=$.
Consider the numbers inside the radical symbols first. Create a table of numbers whose squares

Number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Square	\square	\square	\square	\square

The table shows that 3 is between the perfect squares \square and \square \square, and 7 is between the perfect squares \square and \square

Create a table of numbers between \square and \qquad whose squares are close to 3 , and another table of numbers between \square and \square whose squares are close to 7 .

Number	1.7	1.8	1.9
Square	\square	\square	\square

Number	2.6	2.7	2.8
Square	\square	\square	\square

The average of 1.7 and 1.8 is \square , and $(\square)^{2}=$ \square Because 3 \square
\square , $\sqrt{3}$ is closer to \square than to \square . The average of 2.6 and 2.7 is \square, and $(\square)^{2}=\square$. Because $7 \square \square$, $\sqrt{7}$ closer to \square than to \square.
So, $3 \sqrt{3} \approx 3(\square)=\square$ and $2 \sqrt{7} \approx 2(\square)=\square$. Answer $3 \sqrt{3} \square 2 \sqrt{7}$

Checkpoint Complete the statement using $<,>$, or $=$.
3. $2 \sqrt{28}$ \square $\sqrt{85}$
4. $\sqrt{110}$ \square $3 \sqrt{8}$

Goal: Use the distance, midpoint, and slope formulas.

The Distance Formula

Words The distance between two points in a coordinate plane is equal to the square root of the sum of the horizontal change squared and the vertical change squared.

Algebra $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Example 1 Finding the Distance Between Two Points

Find the distance between the points $M(2,3)$ and $N(1,5)$.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance formula } \\
& =\sqrt{(1-\square)^{2}+(5-\square)^{2}} & & \text { Substitute. } \\
& =\sqrt{(\square)^{2}+\square^{2}} & & \text { Subtract. } \\
& =\sqrt{\square+\square} & & \text { Evaluate powers. } \\
& =\square & & \text { Add. }
\end{aligned}
$$

Answer: The distance between the points is \square units.

Checkpoint Find the distance between the points. Write your answer in simplest form.

1. $(2,-5),(-3,7)$
2. $(2,-2),(0,4)$

The Midpoint Formula

Words The coordinates of the midpoint of a segment are the average of the endpoints' x-coordinates and the average of the endpoints' y-coordinates.

Example 2 Finding a Midpoint

Find the midpoint M of the segment with endpoints $(2,5)$ and ($-6,-3$).

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \quad \text { Midpoint formula }
$$

$$
=\left(\frac{\square+\square}{2}, \frac{\square+\square}{2}\right) \quad \text { Substitute values. }
$$

$$
=\square
$$

Simplify.

Checkpoint Find the midpoint of the segment with the given endpoints.

3. $(2,-5),(-3,7)$	4. $(3,-4),(7,2)$

Slope

If points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ do not lie on a vertical line, you can use coordinate notation to write a formula for the slope of the line through A and B.

$$
\text { slope }=\frac{\text { difference of } y \text {-coordinates }}{\text { difference of } x \text {-coordinates }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Example 3 Finding Slope

Find the slope of the line through $(2,-1)$ and $(-1,2)$.

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { Slope formula }
$$

Substitute values.

Simplify.

Checkpoint Find the slope of the line through the given points.

5. $(2,-6),(-3,9)$	6. $(6,-2),(-4,7)$

Goal: Use special right triangles to solve problems.

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle

Words In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse is the product of the length of a leg and $\sqrt{2}$.

Algebra hypotenuse $=\operatorname{leg} \cdot \sqrt{2}$

$$
=a \sqrt{2}
$$

Example 1 Using a $45^{\circ}-45^{\circ}-90^{\circ}$ Triangle

A $45^{\circ}-45^{\circ}-90^{\circ}$ triangle used in mechanical drawing has 10 -inch legs. Find the length of the hypotenuse to the nearest tenth of an inch.

Solution

$$
\begin{aligned}
\text { hypotenuse } & =\text { leg } \cdot \sqrt{2} & & \text { Rule for } 45^{\circ}-45^{\circ}-90^{\circ} \text { triangle } \\
& =\square \cdot \sqrt{2} & & \text { Substitute. } \\
& \approx \square & & \text { Use a calculator. }
\end{aligned}
$$

Answer: The length of the triangle's hypotenuse is about
\square inches.

Checkpoint

1. Find the unknown length x. Write your answer in simplest form.

In a $30^{\circ}-60^{\circ}-90^{\circ}$
triangle, the shorter leg is opposite the 30° angle, and the longer leg is opposite the 60° angle.

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle

Words In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse is twice the length of the shorter leg. The length of the longer leg is the product of the length of the shorter leg and $\sqrt{3}$.

Algebra hypotenuse $=2 \cdot$ shorter leg $=2 a$

$$
\text { longer leg }=\text { shorter leg } \cdot \sqrt{3}=a \sqrt{3}
$$

Example 2 Using a $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle

Find the length x of the hypotenuse and the length y of the longer leg of the triangle.

The triangle is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.

The length of the shorter leg is \square units.
a. hypotenuse $=2 \cdot$ shorter leg

$$
\begin{aligned}
x & =2 \cdot \square \\
& =\square
\end{aligned}
$$

Answer: The length x of the hypotenuse is \square units.
b. longer leg $=$ shorter leg $\cdot \sqrt{3}$

$$
y=\square \sqrt{3}
$$

Answer: The length y of the longer leg is $\square \sqrt{3}$ units.

Checkpoint

2. Find the unknown lengths x and y. Write your answers in simplest form.

An escalator going up to the second floor in a mall is 224 feet long and makes a 30° angle with the first floor. Find, to the nearest foot, the lengths of the triangle's legs.

Solution

You need to find the length of the shorter leg first.

1. Find the length x of the shorter leg.

$$
\begin{aligned}
\text { hypotenuse } & =2 \cdot \text { shorter leg } & & \text { Rule for } 30^{\circ}-60^{\circ}-90^{\circ} \text { triangle } \\
\square & =2 x & & \text { Substitute. } \\
\square & =x & & \text { Divide each side by } \square .
\end{aligned}
$$

2. Find the length y of the longer leg. longer leg $=$ shorter leg $\cdot \sqrt{3}$ Rule for $30^{\circ}-60^{\circ}-90^{\circ}$ triangle

$y=\square \sqrt{3}$	Substitute.
y	$\approx \square$

Answer: The length of the shorter leg is \square feet and the length of the longer leg is about \square feet.

Goal: Use tangent to find side lengths of right triangles.

Vocabulary

Trigonometric ratio:

The Tangent Ratio

The tangent of an acute angle of a right triangle is the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle.
$\tan A=\frac{\text { side opposite } \angle A}{\text { side adjacent to } \angle A}=\frac{a}{b}$

side adjacent to $\angle A$

Example 1 Finding a Tangent Ratio

For $\triangle P Q R$, find the tangent of $\angle P$. $\tan P=\frac{\text { opposite }}{\text { adjacent }}=\square$

Checkpoint

1. For $\triangle P Q R$ in Example 1, find the tangent of $\angle Q$.
a. $\tan 24^{\circ}$

When using a
calculator to find a
trigonometric ratio,
make sure the
calculator is in
degree mode. Round
the result to four
decimal places if
necessary.

Display

Answer

b. $\tan 55^{\circ}$

Keystrokes

$=55$

Display

\square

Answer

Checkpoint Approximate the tangent value to four decimal places.

2. $\tan 5^{\circ}$	3. $\tan 38^{\circ}$	4. $\tan 72^{\circ}$

Example 3 Using a Tangent Ratio

Find the height h (in feet) of the roof to the nearest foot.

Solution

Use the tangent ratio. In the diagram, the length of the leg opposite the 27° angle is h. The length of the adjacent leg is 30 feet.

$$
\begin{array}{ll}
\tan 27^{\circ}=\frac{\text { opposite }}{\text { adjacent }} & \text { Definition of tangent ratio } \\
\tan 27^{\circ}=\square & \text { Substitute. }
\end{array}
$$

Answer: The height of the roof is about \square feet.

Goal: Use sine and cosine to find triangle side lengths.

The Sine and Cosine Ratios

The sine of an acute angle of a right triangle is the ratio of the length of the side opposite the angle to the length of the hypotenuse.
$\sin A=\frac{\text { side opposite } \angle A}{\text { hypotenuse }}=\frac{a}{c}$

side adjacent to $\angle A$

The cosine of an acute angle of a right triangle is the ratio of the length of the angle's adjacent side to the length of the hypotenuse. $\cos A=\frac{\text { side adjacent } \angle A}{\text { hypotenuse }}=\frac{b}{c}$

Example 1 Finding Sine and Cosine Ratios

For $\triangle P Q R$, find the sine and cosine of $\angle P$. $\sin P=\frac{\text { opposite }}{\text { hypotenuse }}=\square$
 $\cos P=\frac{\text { adjacent }}{\text { hypotenuse }}=\square$

Checkpoint

1. For $\triangle P Q R$ in Example 1, find the sine and cosine of $\angle Q$.
a. $\sin 60^{\circ}$

b. $\cos 45^{\circ}$

Display
\square
\square

Answer
\square

Checkpoint Approximate the sine or cosine value to four decimal places.

2. $\cos 9^{\circ}$	3. $\cos 78^{\circ}$	4. $\sin 13^{\circ}$	5. $\sin 88^{\circ}$

Example 3 Using a Cosine Ratio

Find the value of x in the triangle.
In $\triangle D E F, \overline{D E}$ is adjacent to $\angle D$. Because you know the length of the hypotenuse, use cos D and the definition of the cosine ratio to find the value of x. Round your answer to the nearest tenth of a unit.

$$
\cos D=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \text { Definition of cosine ratio }
$$

Substitute.

Use a calculator to approximate $\cos 39^{\circ}$.
\square Multiply each side by \square

Example 4

A ski jump is 140 meters long and makes an angle of 25° with the ground. To the nearest meter, estimate the height h of
 the ski jump.

Solution

To estimate the height of the ski jump, find the length of the side \square the 25° angle. Because you know the length of the hypotenuse, use $\sin 25^{\circ}$.

$$
\begin{aligned}
\sin 25^{\circ} & =\frac{\text { opposite }}{\text { hypotenuse }} & & \text { Definition of sine ratio } \\
\sin 25^{\circ} & =\square & & \text { Substitute. } \\
\square & \approx \square & & \text { Use a calculator to approximate } \sin 25^{\circ} . \\
\square & \approx h & & \text { Multiply each side by } \square .
\end{aligned}
$$

Answer: The height of the ski jump is about \square meters.

Give an example of the vocabulary word.

Square root

Radical
expression

Hypotenuse

Pythagorean theorem

Perfect square

Simplest form of a radical expression

Leg

Acute triangle

Equiangular triangle

Real number

Midpoint formula

Sine

Obtuse triangle
\square
Irrational number

Distance formula
\square

Slope formula

\square
Cosine
\square

Tangent

Review your notes and Chapter 9 by using the Chapter Review on pages 526-529 of your textbook.

