Goal: Use graphs to represent relations and functions.

Vocabulary

Relation: \square
Domain: \square
Range: \square
Input: \square
Output: \square
Function: \square

Vertical
line test:

Example 1 Identifying the Domain and Range

Identify the domain and range of the relation represented by the table below that shows one Norway Spruce tree's height at different ages.

Age (years), x	5	10	15	20	25
Height (ft), \boldsymbol{y}	13	25	34	43	52

Solution

The relation consists of the ordered pairs \square \square. The domain of the relation is the set of all \square, or \square. The range is the set of all \square,

Domain: \square
\square

Represent the relation (-3, 2), (-2, -2), (1, 1), (1, 3), (2, -3) as indicated.
a. A graph
b. A mapping diagram

Solution

a. Graph the ordered pairs as \square in a coordinate plane.

b. List the inputs and the outputs in order. Draw arrows from the

Example 3 Identifying Functions
Tell whether the relation is a function.
a. The relation in Example 1.
b. The relation in Example 2.

Solution

a. The relation \square a function because \qquad \square. This makes sense, as a single tree can have \square height at a given point in time.
b. The relation \square a function because \qquad
\square

1. $(-5,2),(-3,-1),(-1,0)$, $(2,3),(5,4)$	2. $(-4,-3),(-3,2),(0,0)$, $(1,-1),(2,3),(3,1),(3,-2)$

Example 4 Using the Vertical Line Test

To understand why the vertical line test works, remember that a function has exactly one output for each input.
a. In the graph below, no vertical line passes through more than one point. So, the relation represented by the graph

b. In the graph below, the vertical line shown passes through two points. So, the relation represented by the graph

Goal: Find solutions of equations in two variables.

Vocabulary

Equation in two variables: \square
Solution of an equation in two variables:

Graph of an equation in two variables:

Linear equation: \square
Linear function: \square
Function form: \square

Example 1 Checking Solutions

Tell whether $(5,-1)$ is a solution of $x-3 y=8$.
Solution

$$
\begin{gathered}
x-3 y=8 \\
\square-3(\square) \stackrel{?}{=} 8 \\
\square \square \\
\square \square
\end{gathered}
$$

Answer: $(5,-1) \square$ a solution of $x-3 y=8$.

Checkpoint Tell whether the ordered pair is a solution of $2 x-y=5$.

1. $(0,-5)$
2. $(3,2)$
3. (-2, -9)

Example 2 Graphing a Linear Equation

Graph $y=-x+1$.

1. Make a table of solutions.

\mathbf{x}	$\mathbf{- 2}$	-1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
\mathbf{y}	\square	\square	\square	\square	\square

2. List the solutions as ordered pairs.

$$
\begin{aligned}
& (-2, \square),(-1, \square), \\
& (1, \square),(2, \square)
\end{aligned}
$$, (0, \square

3. Graph the ordered pairs, and note that the points lie on a
\square . Draw the \square , which is the graph of $y=-x+1$.

Example 3 Graphing Horizontal and Vertical Lines

Graph $y=-2$ and $x=3$.
a. The graph of the equation

$$
y=-2 \text { is }
$$

\square
b. The graph of the equation

$$
x=3 \text { is } \square
$$

Write $3 x-y=2$ in function form. Then graph the equation.
To write the equation in function form, solve for \qquad .

$$
3 x-y=2 \quad \text { Write original equation. }
$$

| \square | $=\square+2$ | Subtract \square from each sid |
| ---: | :--- | ---: | :--- |
| \square | $=\square-2$ | Multiply each side by \square. |

To graph the equation, use its function form to make a table of solutions. Graph the ordered pairs (x, y) from the table, and draw a line through the points.

Checkpoint

4. Graph $y=4$ and $x=-3$.

Tell whether each equation is a function.

5. Write $x-2 y=4$ in function form. Then graph the equation.

Linear and Nonlinear Functions

Goal: Understand that functions can be linear or nonlinear.

Vocabulary

Nonlinear function \square
Increasing function \square
Decreasing function \square

Example 1 Analyzing the Graph of a Linear Function

Graph the linear function $y=-0.5 x-1$. Is the function increasing or decreasing? Explain.

Make a table of solutions. Then graph the ordered pairs (x, y) and draw a \square through the points.

\boldsymbol{x}	-4	-2	0	2	4
\mathbf{y}	\square	\square	\square	\square	\square

Because the graph \square from left to right, the function is \square

Graph the nonlinear function $y=x^{3}-2$. Is the function increasing or decreasing? Explain.

Make a table of solutions. Then graph the ordered pairs (x, y) and draw a \square through the points.

x	-2	-1	0	1	2
y	\square	\square	\square	\square	\square

Because the graph \square from left to right, the function is \square

Example 3 Graphing a Function that is Described Verbally

Driveway Consider a driveway that is 15 feet wide. Graph the perimeter of the rectangular driveway as a function of its length I. Is the function linear or nonlinear? Increasing or decreasing? Explain.

Solution

1. Write a function using the formula for \square

$$
\begin{aligned}
P & =2 w+2 l & & \text { Formula for perimeter } \\
& =\square & & \text { Substitute. } \\
& =\square & & \text { Multiply. }
\end{aligned}
$$

2. Make a table of solutions and sketch the graph of the function.

\boldsymbol{I}	10	20	30	40	50
\boldsymbol{P}	\square	\square	\square	\square	\square

3. As x increases by $10, y$ increases by \square. So, the function changes at a \square and therefore is \square. Because the graph \square from left to right, the function is \qquad

Goal: Use x - and y-intercepts to graph linear equations.

Vocabulary

\square
y-intercept: \square

Finding Intercepts

To find the x-intercept of a line, substitute \square for y in the line's equation and solve for \square
To find the y-intercept of a line, substitute \square for x in the line's equation and solve for \square \square.

Example 1 Finding Intercepts of a Graph

Find the intercepts of the graph of $2 x-5 y=-10$.
To find the x-intercept, let $y=\square$ and solve for x.

$$
\begin{aligned}
2 x-5 y & =-10 & & \text { Write original equation. } \\
2 x-5(\square) & =-10 & & \text { Substitute for } y . \\
\square & =-10 & & \text { Simplify. } \\
x & =\square & & \text { Divide each side by } \square .
\end{aligned}
$$

The intercepts of a graph are numbers, not ordered pairs.

To find the y-intercept, let $x=\square$ and solve for y.

$$
\begin{aligned}
2 x-5 y & =-10 & & \text { Write original equation. } \\
2(\square)-5 y & =-10 & & \text { Substitute for } x . \\
\square & =-10 & & \text { Simplify. } \\
y & =\square & & \text { Divide each side by } \square .
\end{aligned}
$$

Answer: The x-intercept is \square , and the y-intercept is \square

Example 2 Using Intercepts to Graph a Linear Equation

Graph the equation $2 x-5 y=-10$ from Example 1.

The x-intercept is \square , so plot the point $(\square, 0)$. The y-intercept is \square, so plot the point $(0, \square)$.

Draw a line through the two points.

. Checkpoint Find the intercepts of the equation's graph.
Then graph the equation.

1. $2 x+3 y=6$

2. $3 x-6 y=12$

Fitness You run and walk on a fitness trail that is 12 miles long. You can run 6 miles per hour and walk 3 miles per hour. Write and graph an equation describing your possible running and walking times on the fitness trail. Give three possible combinations of running and walking times.

Solution

1. To write an equation, let x be the running time and let y be the walking time (both in hours). First write a verbal model.

Then use the verbal model to write the equation.
\square
2. To graph the equation, find and use the intercepts.

Find x-intercept: \square

Find y-intercept: \square

\square
\square

3. Three points on the graph are \square So, you can \square

Goal: Find and interpret slopes of lines.

Vocabulary

Slope: \square
Rise: \square
Run: \square

Example 1 Finding Slope

A building's access ramp has a rise of 2 feet and a run of 24 feet. Find its slope.

$$
\text { slope }=\frac{\text { rise }}{\square}=\square=\square \quad \frac{\text { rise }=2 \mathrm{ft}}{\text { run }=24 \mathrm{ft}}
$$

Answer: The access ramp has a slope of \square

Slope of a Line

Given two points on a nonvertical line, you can find the slope m of the line using this formula.

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }} \\
& =\frac{\text { difference of } y \text {-coordinates }}{\text { difference of } x \text {-coordinates }}
\end{aligned}
$$

Example $m=\frac{4-1}{5-3}=\square$

Find the slope of the line shown.
a. $m=\frac{\text { rise }}{\text { run }}$

$$
=\frac{\text { difference of } y \text {-coordinates }}{\text { difference of } x \text {-coordinates }}
$$

$=\square$

Answer: The slope is \square
b. $m=\frac{\text { rise }}{\text { run }}$
$=\frac{\text { difference of } y \text {-coordinates }}{\text { difference of } x \text {-coordinates }}$
$=\square$
$=\square=\square$

Answer: The slope is \square

Find the slope of the line through the given points.

1. $(2,-2),(0,4)$	2. $(7,5),(3,2)$	3. $(-2,4),(6,2)$

Find the slope of the line shown.
a. $m=\frac{\text { rise }}{\text { run }}$

$$
\begin{aligned}
& =\frac{\text { difference of } y \text {-coordinates }}{\text { difference of } x \text {-coordinates }} \\
& =\square \\
& =\square=\square
\end{aligned}
$$

Answer: The slope is \qquad
b. $m=\frac{\text { rise }}{\text { run }}$
$=\frac{\text { difference of } y \text {-coordinates }}{\text { difference of } x \text {-coordinates }}$
$=\square$
$=\square$

Answer: The slope is \square

Checkpoint Find the slope of the line through the given points. Tell whether the slope is positive, negative, zero, or undefined.

4. $(3,-1),(3,5)$	$5 .(-2,5),(3,4)$	6. $(1,-1),(7,-1)$

Goal: Interpret and create graphs representing real-world situations.

Example 1 Interpreting a Real-World Graph

Bathtub The graph shows the amount of water in a bathtub.
Describe what is happening over time.

Solution

The slopes of the segments in the graph represent the rates of change in the \qquad over \qquad \square.

- First 4 minutes: The first two segments have \square slopes, so the bathtub is filling with water. The first segment is not as steep as the second, so the rate at which the water is filling the tub is \qquad between 0 and 2 minutes than between 2 and 4 minutes.
- Next 10 minutes: The slope of the third segment is 0 , so the \square is not changing. The water has been shut off.
- After 14 minutes: The last two segments have \qquad slopes, so the water is draining from the bathtub. The fourth segment is steeper than the fifth segment, so the rate at which the water is draining from the tub is \qquad between 14 and 18 minutes than between 18 and 20 minutes.

Temperature The graph shows the temperatures on a winter night from midnight until early the next morning. Describe what is happening.

Solution

The first four segments of the graph have alternating $\square \square$ and slopes, so the temperature decreases, holds steady, decreases, and then holds steady again. The last two segments of the graph have \qquad slopes, so the temperature \qquad as morning approaches.

Example 3 Creating a Real-World Graph

Weekend Fun One Saturday, a student starts from home and rides a bicycle 3 miles to a friend's house. After visiting for 5 minutes, the friends walk 1 mile to the park. Draw a graph representing this situation.

Solution

A reasonable biking speed would be 12 miles per hour, or 5 minutes per mile. A reasonable walking speed would be 3 miles per hour, or 20 minutes per mile.

The distance from home \qquad when the student travels 3 miles (\square minutes of biking) to the friend's house, remains the same for 5 minutes, and then \qquad when the friends walk 1 mile (\square minutes of walking) to the park.

Slope-Intercept Form

Goal: Graph linear equations in slope-intercept form.

Slope-Intercept Form

Words A linear equation of the form $y=m x+b$ is said to be in slope-intercept form. The \square is m and the \square is b.
Algebra $y=m x+b$
Numbers $y=2 x+3$

Example 1 Identifying the Slope and y-Intercept

Identify the slope and y-intercept of the line.
a. $y=2 x-3$
b. $4 x+3 y=9$

Solution
a. Write the equation $y=2 x-3$ as \square.

Answer: The line has a slope of \square and a y-intercept of \square
b. Write the equation $4 x+3 y=9$ in slope-intercept form.
$4 x+3 y=9 \quad$ Write original equation.

$$
\begin{aligned}
& 3 y=\square \\
& y=\square \\
& \text { Subtract } \square \text { from each side. } \\
& \text { Multiply each side by } \square .
\end{aligned}
$$

Answer: The line has a slope of \square and a y-intercept of \square \square.

Checkpoint Identify the slope and y-intercept of the line with the given equation.

1. $y=-3 x-4$	2. $x-2 y=10$

Graph the equation $y=-\frac{3}{4} x+2$.

1. The y-intercept is \qquad , so plot the point \square
2. The slope is $\square=\frac{-\square}{\square}$ Starting at \square , plot another point by moving right \square units
 and down \square units.
3. Draw a line through the two points.

Slopes of Parallel and Perpendicular Lines

If m is any nonzero number, then the negative reciprocal of m is $-\frac{1}{m}$. Note that the product of a number and its negative reciprocal is -1:

$$
m\left(-\frac{1}{m}\right)=-1
$$

Two nonvertical parallel lines have \square For example, the parallel lines a and b below \square

$$
a \| b
$$

Two nonvertical perpendicular lines, such as lines a and c below, have slopes that are \qquad .

Find the slope of a line that has the given relationship to the line with the equation $5 x+2 y=10$.
a. Parallel to the line
b. Perpendicular to the line

Solution

a. First write the given equation in slope-intercept form.

$$
\begin{array}{rlrl}
5 x+2 y & =10 & & \text { Write original equation. } \\
2 y & =\square+10 & & \text { Subtract } \square \\
\text { from each side. } \\
y & =\square & & \text { Multiply each side by } \square .
\end{array}
$$

The slope of the given line is \square Because parallel lines
\square , the slope of the parallel line is
\square
b. From part (a), the slope of the given line is \square So, the slope of a line perpendicular to the given line is \square \square of \square, or \square.

Checkpoint For the line with the given equation, find the slope of a parallel line and the slope of a perpendicular line.

3. $y=-5 x-4$	4. $2 x-3 y=6$

Graphs of Direct Variations

Goal: Analyze a direct variation graph, and graph a direct variation equation.

Example 1 Analyzing a Graph

Buying Mulch The graph shows the cost of buying mulch for landscaping. Tell whether the graph represents a direct variation. If so, tell which variable varies directly with the other. Also identify the constant of variation and interpret it both in relation to the graph and in relation to the real-world situation.

Solution

Find the ratio $\frac{y}{x}$ for each ordered pair \square shown on the graph: $\frac{11.5}{10}=\square \quad \frac{23}{20}=\square \quad \frac{34.5}{30}=\square$

Because the ratios are \square , the graph represents a \square Because y represents cost and x represents the \square of the mulch, the graph shows that \square varies directly with the \square of the mulch. The constant of variation is \square . Because $(0,0)$ is a point on the graph, calculating the slope between this point and any other point on the graph results in the \qquad For instance:

$$
\frac{11.5-0}{10-0}=\frac{11.5}{10}=\square
$$

In relation to the graph, the constant of variation is the \square . In relation to the real-world situation, the constant of variation is the
\square per \square of mulch, or \square per \qquad .

Properties of Graphs of Direct Variations

The graph of $y=k x$ is in slope-intercept form, $y=m x+b$. In this case, $m=k$ and $b=0$, so the graph of $y=k x$ is a line having a slope of k and a y-intercept of 0 .

- A direct variation is defined by the equation $\frac{y}{\square}=k$ for a nonzero constant k. An equivalent form of this equation (when solved for y) is $y=$ \qquad
- The graph of $y=k x$ is a line through the origin with slope \square .

Example 2 Drawing and Using a Direct Variation Graph

Running A runner is training for a race. In the direct variation equation $y=160 x, y$ represents the distance traveled (in meters) and x represents the running time (in minutes).
a. Graph the equation. Interpret the graph's slope.
b. The running path is about 400 meters long. Use your graph to estimate the time it will take the runner to run the entire path.

Solution

a. You know that $(0,0)$ is one point on the graph. Another point on the graph is \qquad . Plot the points and draw a line through them. The slope of the line is \qquad , which represents the runner's average speed, \square meters per minute.
b. Locate \square on the y-axis. Move \square to the graphed line and then \square to the x-axis. You end up at $x=\square$, so the time it takes for the runner to run the entire path is
\square minutes.

Goal: Use the equation of a linear model to solve problems in the context of bivariate measurement data.

Example 1 Finding a Linear Model

Fundraiser The table shows the amounts x (in dollars) spent on advertising and the numbers y of tickets sold for six football games.

Advertising, \boldsymbol{x}	$\$ 750$	$\$ 700$	$\$ 600$	$\$ 500$	$\$ 300$	$\$ 0$
Tickets, \boldsymbol{y}	778	775	754	726	688	600

a. Make a scatter plot of the data.
b. Find a linear model for the data.
c. Predict the number of tickets sold for a game when $\$ 200$ is spent on advertising.

Solution

a. Write the data as ordered pairs and plot them as points in a coordinate plane.
(750, 778), (700,

(600,

\square 726), $(300, \square),(\square, 600)$

b. Use the points $(0,600)$ and $(700,775)$ to draw a line as close as possible to the data points. Use the points to find the slope of the line.

So, a linear model for the data is $y=\square$.
c. Use the linear model from part (b).

Answer: You can predict that when $\$ 200$ is spent on advertising, about \square tickets will be sold.

Flying The actual speed y (in knots) of an airplane flying into a headwind of x knots is given by $y=-x+120$.
a. Graph the equation.
b. Interpret the slope and y-intercept.

Solution

a. The y-intercept is 120 , so plot \square
\square . The slope is
\square so move 5 units to the right and \square units down, and plot a point at $(5, \square)$.
Then draw a line through
 the two points.
b. The slope of \square means that each mile per hour of headwind decreases the speed of the plane by \square mile per hour. The y-intercept of 120 means that the plane flies at \qquad miles per hour when \square .

Checkpoint Complete the following exercise.

1. The table shows the value y of a product after x years of use.

Age, \boldsymbol{x}	1	2	3	4	5	6
Value, \boldsymbol{y}	700	620	525	480	380	300

a. Make a scatter plot of the data.
b. Find a linear model for the data.
c. Interpret the slope and y-intercept of the graph of the linear model.

8.6 Writing Linear Equations

Goal: Write linear equations.

Vocabulary

Best-fitting line:

Example 1 Writing an Equation Given the Slope and y-Intercept
Write an equation of the line with a slope of -2 and a \boldsymbol{y}-intercept of $\mathbf{- 5}$.

$$
y=m x+b \quad \text { Write general slope-intercept equation }
$$

$$
y=\square x+\square \quad \text { Substitute for } m \text { and for } b .
$$

$$
y=\square \quad \text { Simplify. }
$$

Checkpoint

1. Write an equation of the line with a slope of 4 and a y-intercept of -3 .

Example 2 Writing an Equation of a Graph

Write an equation of the line shown.

1. Find the slope m using the labeled points.

$$
m=\square=\square
$$

2. Find the y-intercept b. The line crosses
 the \square at \square, so $b=\square$.
3. Write an equation of the form $y=m x+b$.

$$
y=\square x+\square
$$

a. Write an equation of the line that is parallel to the line $y=8 x$ and passes through the point $(0,3)$.
b. Write an equation of the line that is perpendicular to the line $y=-\frac{1}{2} x+3$ and passes through the point $(0,-5)$.

Solution

a. The slope of the given line is \square so the slope of the parallel line is also \square The parallel line passes through (0,3), so its y-intercept is \qquad
Answer: An equation of the line is \square
b. Because the slope of the given line is \square , the slope of the perpendicular line is the negative reciprocal of \square or \qquad The perpendicular line passes through (0,5), so its y-intercept is \square
Answer: An equation of the line is \square

Checkpoint

2. Write an equation of the line through the points $(0,-3)$ and $(4,5)$.
3. Write an equation of the line that is parallel to $y=3 x+2$ and passes through the point $(0,4)$.
4. Write an equation of the line that is perpendicular to $y=3 x+2$ and passes through the point $(0,-2)$.

Teachers The table shows the number of elementary and secondary school teachers in the United States for the years 1992-1999.

Years since 1992, x	0	1	2	3	4	5	6	7
Teachers (in ten thousands), y	282	287	293	298	305	313	322	330

a. Approximate the equation of the best-fitting line for the data.
b. Predict the number of teachers in 2006.

Solution

a. First, make a scatter plot of the data pairs.

Next, draw the line that appears to best fit the data points. There should be about the same number of points above the line as below it. The line does not have to pass through any of the data points.

Finally, write an equation of the
 line. To find the slope, estimate the coordinates of two points on the line, such as $(0,280)$ and $(7,330)$.
$m=\square=\square \approx \square$

The line intersects the y-axis at \square , so the y-intercept is \qquad .

Answer: An approximate equation of the best fitting line is $y=\square$.
b. Note that 2006-1992 = \quad, so 2006 is \square years after 1992. Calculate y when $x=\square$ using the equation from part (a).
\square
Answer: In 2006, there would have been about \square teachers in the United States.
 \title{
Domain and Range
 \title{
Domain and Range of a Function
} of a Function
}

Goal: Analyze the domain and range of a linear function.

Identifying Discrete and Continuous Functions

 points.

As a general rule, you can tell that a function is continuous if you do not have to lift your pencil from the paper to draw its graph.

Example 1 Graphing and Classifying a Function

Graph the function $y=x-2$ with the given domain. Classify the function as discrete or continuous. Then identify the range.
a. Domain: 3, 4, 5

Solution

a. Make a table and plot the points.

The function is \square The range is \qquad
b. Domain: $x \leq 0$
b. Plot $(0,-2)$ and draw the part of the line $y=x-2$ that lines in Quadrant III. The

The graph is continuous. The range is \qquad

When writing an equation for a realworld linear function, you may find it helpful to draw a diagram or use a model.

Example 2 Classifying a Real-World Function

Write an equation for the function described. Tell whether the function is discrete or continuous. Then answer the question.

Exercise An athlete burns 180 calories lifting free weights and then burns 12 calories per minute on the elliptical machine. The total number of calories burned is a function of the number of minutes the athlete spends on the elliptical machine. How many minutes does the athlete need to spend on the elliptical machine if the goal is to burn a total of 420 calories?

Solution

1. Let x represent the number of minutes the athlete spends on the elliptical machine. Let y represent the total number of calories burned. The athlete has already burned \qquad calories and will burn \qquad calories per minute on the elliptical machine, so the equation for the total number of calories burned is given by:

$$
\square=\square
$$

2. You can burn fractional parts of calories, so the domain consists of
\square . So the function is
\qquad .
3. To find the number of minutes the athlete needs to spend on the elliptical machine, substitute \square for y.

Answer

Substitute.

Subtract \square from each side.
Divide each side by \square.
\square minutes

Goal: Interpret scatter plots.

Review Vocabulary

Positive linear Association:

Negative linear association:
\square

No linear Association:

Outlier:

Non linear association:

Example 1 Analyzing a Scatter Plot

The table shows the height (in feet) and the price (in dollars) of several ornamental trees. Make a scatter plot of the data. Identify any outliers and describe the association.

Height (feet)	3	3	4	5	5	6	6	7
Price (dollars)	45	50	54	30	63	70	75	80

Solution

Let x represent the height and let y represent the price. Plot the ordered pairs in a coordinate plane.
The data point (\square) is widely separated from the rest of the data. So, it is an
\qquad
Draw a line through the clustered points. They \qquad from left to right, so the data have a \qquad association.

The table shows the age (in years) and the number of visits to the doctor for several people in the past year. Make a scatter plot of the data. Describe the association.

Age	1	2	4	11	21	32	45	62	65	74
Visits	8	6	3	1	1	2	2	4	5	9

Solution

Let x represent the age and let y represent the number of visits. Plot the ordered pairs in a coordinate plane.

There is no \qquad that the points cluster along, but they do cluster around a \square Draw the \qquad
Because the points cluster around a \square, the data have a
\square association.

Checkpoint Make a scatter plot of the data in the table. Identify any outliers and describe the association of the data.
1.

x	1	2	2	3	4	5	6	6	7	9
y	8	8	7	6	5	5	4	3	3	1

no outliers; negative linear association

2.

x	1	2	3	4	5	5	6	7	8	9
y	1	3	4	5	1	5	5	4	3	2

outlier: (5, 1); nonlinear association

Goal: Use function notation.

Vocabulary

Function notation:

Example 1 Working with Function Notation

Let $f(x)=2 x-5$. Find $f(x)$ when $x=-3$, and find x when $f(x)=13$.
a. $\quad f(x)=2 x-5 \quad$ Write function.

$$
\begin{aligned}
f(\square) & =2(\square)-5 & & \text { Substitute for } x . \\
& =\square & & \text { Simplify. }
\end{aligned}
$$

Answer: When $x=-3, f(x)=\square$.
b.

$$
f(x)=2 x-5 \quad \text { Write function. }
$$

$$
\square=2 x-5 \quad \text { Substitute for } f(x)
$$

$$
\square=2 x \quad \text { Add } \square \text { to each side. }
$$

$$
\square=x \quad \text { Divide each side by } \square
$$

Answer: When $f(x)=13, x=\square$.

Checkpoint Let $g(x)=-x+7$. Find the indicated value.

1. $g(x)$ when $x=4$
2. x when $g(x)=9$

Graph the function $f(x)=\frac{5}{6} x-3$.

1. Rewrite the function as

2. The y-intercept is \square , so plot the point
 .
3. The slope is \square . Starting at

\square , plot another point by
moving right \square units and up
\square units.
4. Draw a line through the two points.

(.) Checkpoint Graph the function.

3. $g(x)=-\frac{2}{3} x+2$

4. $h(x)=\frac{3}{2} x-1$

Write a linear function g given that $g(0)=10$ and $g(4)=-2$.

1. Find the slope m of the function's graph. From the values of $g(0)$ and $g(4)$, you know that the graph of g passes through the points \square and \square. Use these points to calculate the slope.

$$
m=\square=\square=\square
$$

2. Find the y-intercept b of the function's graph. The graph passes through \square so $b=$ \square
3. Write an equation of the form $g(x)=m x+b$.
\square

Example 4 Using Function Notation in Real Life

You ride your bike at a speed of 12 miles per hour.
a. Use function notation to write an equation giving the distance traveled as a function of time.
b. How long will it take you to travel 30 miles?

Solution

a. Let t be the elapsed time (in hours) since you started riding your bike, and let $d(t)$ be the distance traveled (in miles) at that time. Write a verbal model. Then use the verbal model to write an equation.

b. Find the value of t for which $d(t)=30$.

$$
\begin{array}{rll}
d(t) & =\square & \text { Write function for distance. } \\
\square & =\square & \text { Substitute for } d(t) . \\
\square & =t & \\
\text { Divide each side by } \square .
\end{array}
$$

Answer: It will take you \square hours to travel 30 miles.

Focus On Functions

Goal: Compare two different proportional relationships and compare two different functional relationships.

Example 1 Comparing Proportional Relationships

The graph and table show the number of bracelets y you and your friend can make in x hours, respectively. Who can make bracelets faster? Explain.

Your Friend's Rate	
Hours, \boldsymbol{x}	Bracelets, \boldsymbol{y}
2	10
4	20
6	30
8	40

Solution

The slope of the line shown in the graph is \square So, you can make bracelets at a rate of \qquad The data in the table vary directly. The constant of variation is \square. So, your friend can make bracelets at a rate of \square can make bracelets faster.

Example 2 Comparing Functions

Compare the function
$f(x)=\frac{1}{3} x+2$ with the linear function shown in the graph.

Solution

The slope of $f(x)=\frac{1}{3} x+2$ is \square and the y-intercept is \square. The slope of function
 shown in the graph is \square and the y-intercept
\qquad The function shown in the graph has a \square rate of change because its slope is \qquad

You and your friend each want to buy a shool jacket that costs $\$ 75$. You can save $\$ 13$ per week, starting now. The table shows what your friend can save. (a) Compare your savings plan to that of your friend.
(b) Who can buy the jacket first? Explain.

Solution

a. The table shows that your friend

Weeks	Amount saved
0	$\$ 25$
1	$\$ 36$
2	$\$ 47$
3	$\$ 58$
4	$\$ 69$
5	$\$ 80$

So, \square save at a greater rate.
b. It will take you \square weeks (\$ $\square \times$
\qquad $\times \square=\$$ \square to save enough money. Using the table, it will take your friend \square weeks to save enough money. So, \square will be able to buy the jacket first.

Checkpoint Complete the following exercise.

1. Membership Your family wants to join a fitness club. The cost to join club A for x months is given by the function $y=45 x$. The cost to join club B for x months is shown in the graph. Club C charges a $\$ 75$ initiation fee. The cost to join club C for x months is shown in the table.

Club C	
Months, \boldsymbol{x}	Cost, \boldsymbol{y}
1	$\$ 100$
2	$\$ 125$
3	$\$ 150$
4	$\$ 175$

a. Compare the monthly rates of club A and club B.
b. Compare the monthly rates of club B and club C.
c. Which club costs the least to join for 10 months?

8.8 Systems of Linear Equations

Goal: Graph and solve systems of linear equations.

Vocabulary

System of
linear equations: \square
Solution of a linear system: \square

Example 1 Solving a System of Linear Equations

Solve the linear system: $y=x-3 \quad$ Equation 1

$$
y=-\frac{1}{5} x+3 \quad \text { Equation } 2
$$

1. Graph the equations.
2. Identify the apparent intersection point, \qquad
3. Verify that \square is the solution of the system by substituting \square for x and \square for y in each equation.

Equation 1

$$
y=x-3
$$

Equation 2

$$
y=-\frac{1}{5} x+3
$$

$$
\square \stackrel{?}{=} \square-3
$$

\square
Answer: The solution is \square
$\square \square \square \square \square$

Solve the linear system: $y=-3 x-2$ Equation 1

$$
y=-3 x+3 \quad \text { Equation } 2
$$

Graph the equations. The graphs appear to be \qquad lines. You can confirm that the lines are \square by observing from their equations that they have the \square

Answer: Because parallel lines \square , the linear system has \qquad

Example 3 Solving a Linear System with Many Solutions

Solve the linear system: $2 x+y=4$ $-6 x+3 y=-12 \quad$ Equation 2

Write each equation in slope-intercept form and then graph the equations.

Equation 1
$2 x+y=4$

$$
y=\square
$$

Equation 2
$-6 x-3 y=-12$

\square

$$
y=\square
$$

Equation 1

The slope-intercept forms of equations 1 and 2 are identical, so the graphs of the equations are \square .

Answer: Because the graphs have infinitely many \square
\square , the system has \square
Any \square on the line \square represents a solution.

Checkpoint Solve the linear system by graphing.

1. $y=-x+3$
$y=\frac{1}{3} x-1$

2. $5 x+y=-3$

$$
10 x+2 y=8
$$

Example 4 Writing and Solving a Linear System

An ecologist is studying the population of two types of fish in a lake. Use the information in the table to predict when the population of the two types of fish will be the same.

Fish type	Current population	Change (number per year)
A	340	-25
B	180	15

Solution

Let y be the number of fish after x years. Write a linear system.
Fish A population: \square
Fish B population: \square
Use a graphing calculator to graph the equations. Trace along one of the graphs until the cursor is on the point of intersection. This point is \qquad
Answer: The number of fish will be the same after \square years when the population of each fish will be \square

Solving Systems of Equations

Goal: Solve systems of equations graphically and algebraically.

Example 1 Estimating the Solution of a Linear System

Graphically estimate the solution of the linear system:
$5 x+y=2$
Equation 1
$-10 x-4 y=3$
Equation 2

Solution

Graph the equations. Because the lines do not intersect at an \square of
\square, estimate the point of
intersection. The lines appear to intersect at about \square ,\square).

Answer: The solution of the system is approximately \square
\square

Example 2 Solving a Linear System Algebraically

Solve the linear system algebraically:

$$
\begin{aligned}
5 x+y=2 & \text { Equation } 1 \\
-10 x-4 y=3 & \text { Equation } 2
\end{aligned}
$$

1. Solve one of the equations for one variable.

$$
\begin{aligned}
5 x+y & =2 & & \text { Equation } 1 \\
y & =\square & & \text { Solve for } y .
\end{aligned}
$$

2. Substitute for y in the other equation and solve for x.

$$
\begin{aligned}
-10 x-4 y & =3 \\
-10 x-4(\square) & =3 \\
-10 x-\square+\square & =3 \\
\square x & =\square \\
x & =\square
\end{aligned}
$$

$$
\text { Equation } 2
$$

$$
\text { Substitute (} \square \text {) for } y \text {. }
$$

Distributive property
Simplify.
Divide each side by \square
3. Substitute the value of x in one of the original equations to find y.
$5(\square)+y=2$
$\square+y=2$
$y=\square$

Substitute \square for x in Equation 1. Multiply. Subtract \square from each side.

Answer: The exact solution of the system is \square , \square

Example 3 Solving a Linear System by Inspection

Solve the linear system by inspection.
a. $x+y=2$
$3 x+3 y=6$
b. $x-y=-1$
$x-y=4$
c. $x=-5$
$y=1$

Solution
a. The \square property of equality can be used to obtain
\square from \square , so the two equations are
\square
Answer The system has an \square number of solutions consisting of all the points on the line \square
b. The left side of each equation is the \square It is not possible for the value of $x-y$ to equal both \square and \square \square.

Answer The system has \qquad .
c. The vertical line $x=-5$ and the horizontal line $y=1$ intersect at the point \square
\square
Answer The solution of the system is \square ,
(Checkpoint Graphically estimate the solution of the linear system. Then solve the system algebraically.

Goal: Graph inequalities in two variables.

Vocabulary

Linear
inequality:

Solution of a linear inequality:

Graph of a linear inequality:

Example 1 Checking Solutions of a Linear Inequality

Tell whether the ordered pair is a solution of $3 x-y>2$.
a. $(3,0)$
b. $(-1,5)$

Solution
a. Substitute for x and for y.
b. Substitute for x and for y.

$(3,0)$ \square a solution.

- checkpoint Tell whether the ordered pair is a solution of $-x+2 y>4$.

1. $(1,6)$	2. $(-7,-2)$	3. $(2,3)$

Graphing Linear Inequalities

1. Find the equation of the boundary line by replacing the inequality symbol with $=$. Graph this equation. Use a dashed line for $<$ or $>$. Use a solid line for \leq or \geq.
2. Test a point in one of the half-planes to determine whether it is a solution of the inequality.
3. If the test point is a solution, shade the half-plane that contains the point. If not, shade the other half-plane.

Example 2 Graphing a Linear Inequality

Graph $y \geq-x+1$.

1. Draw the boundary line $y=-x+1$. The inequality symbol is \geq, so use a
\square
2. Test the point $(0,0)$ in the inequality.

3. Because $(0,0) \square$ a solution, shade the half-plane that
\square

Graph $x>-2$ and $y \leq 3$ in a coordinate plane.

a. Graph $x=-2$ using a
\square line. Use (0,0) as a test point.

$$
x>-2
$$

\square

Shade the half-plane

b. Graph $y=3$ using a
\square line. Use (0,0) as a test point.

$$
y \leq 3
$$

Shade the half-plane

(. Checkpoint Graph the inequality in a coordinate plane.
4. $6 x-3 y<9$
5. $x \leq 4$

Give an example of the vocabulary word.

Range

Output

Vertical line test

Domain
\square
Input

Function

Equation in two variables

Solution of an equation in two variables

Linear equation

Function form
\square
y-intercept
\square
Rise

Slope-intercept form

Graph of an equation in two variables
\square

Linear function

x-intercept
\square
Slope
\square
Run
\square
Best-fitting line

Discrete function

Continuous function

System of linear equations

Linear inequality in two variables

Function notation

Solution of a linear system

Solution of a linear inequality in two variables

Graph of a linear inequality in two variables

Review your notes and Chapter 8 by using the Chapter Review on pages 466-469 of your textbook.

