Goal: Multiply and divide powers.

Product of Powers Property

Words To multiply powers with the same base, add their exponents.

Algebra $a^{m} \cdot a^{n}=a^{m+n}$
Numbers $4^{3} \cdot 4^{2}=4^{\square}=4 \square$

Example 1 Using the Product of Powers Property

a. $4^{7} \cdot 4^{11}=4^{\square} \quad$ Product of powers property

$$
=4
$$

b. $2 x^{2} \cdot 7 x^{6}=2 \cdot 7 \cdot x^{2} \cdot x^{6}$

$$
=2 \cdot 7 \cdot x \square
$$

$$
=2 \cdot 7 \cdot x \square
$$

$$
=\square
$$

Add exponents.
Commutative property of multiplication

Product of powers property
Add exponents.
Multiply.

Checkpoint Find the product. Write your answer using exponents.

1. $2^{5} \cdot 2^{12}$	2. $(0.4)^{6} \cdot(0.4)^{2} \cdot(0.4)^{3}$
3. $x^{6} \cdot x^{13}$	4. $b^{2} \cdot b^{4} \cdot b$

Quotient of Powers Property

Words To divide powers with the same base, subtract the exponent of the denominator from the exponent of the numerator.

Algebra $\frac{a^{m}}{a^{n}}=a^{m-n}$, where $a \neq 0$
Numbers $\frac{5^{7}}{5^{4}}=5 \quad \square=5$

Example 2 Using the Quotient of Powers Property

a. $\frac{(0.6)^{8}}{(0.6)^{3}}=(0.6) \square$ Quotient of powers property
$=(0.6) \square$
Subtract exponents.
b. $\frac{3 x^{7}}{12 x^{3}}=\frac{3 x \square}{12} \quad$ Quotient of powers property

$$
=\frac{3 x \square}{12} \quad \text { Subtract exponents. }
$$

$$
=\square
$$

Divide numerator and denominator by \square

Checkpoint Find the quotient. Write your answer using exponents.

5. $\frac{5^{9}}{5^{2}}$	6. $\frac{(1.4)^{7}}{(1.4)^{4}}$
7. $\frac{4 x^{13}}{24 x^{9}}$	8. $\frac{14 x^{16}}{6 x^{11}}$

Simplify $\frac{4 m^{3} \cdot m^{4}}{12 m^{2}}$.

$$
\frac{4 m^{3} \cdot m^{4}}{12 m^{2}}=\frac{4 m \square}{12 m^{2}}
$$

$$
=\frac{4 m \square}{12 m^{2}} \quad \text { Add exponents. }
$$

$$
=\frac{4 m \square}{12}
$$

$$
=\frac{4 m \square}{12}
$$

$$
=\square
$$

Checkpoint Simplify.

Goal: Work with negative and zero exponents.

Negative and Zero Exponents

For any nonzero number $a, a^{0}=1$.
For any nonzero number a and any integer $n, a^{-n}=\frac{1}{a^{n}}$.

Example 1 Powers with Negative and Zero Exponents

Write the expression using only positive exponents.
a. $4^{-3}=\square$

Definition of negative exponent
b. $m^{-5} n^{0}=m^{-5} \cdot \square \quad$ Definition of zero exponent

Definition of negative exponent
c. $13 x y^{-8}=\square$

Definition of negative exponent

Checkpoint Write the expression using only positive exponents.

1. $33,333^{0}$	2. 7^{-3}	$3.2 z^{-2}$	4. $3 x^{-4} y$

Example 2 Rewriting Fractions

Write the expression without using a fraction bar.
a. $\frac{1}{15}=\square$ Definition of negative exponent
b. $\frac{a^{3}}{c^{5}}=\square$

Definition of negative exponent

5. $\frac{1}{18}$	6. $\frac{1}{100}$	7. $\frac{3}{c^{2}}$	8. $\frac{x^{5}}{y^{7}}$

Example 3 Using Powers Properties with Negative Exponents

Find the product or quotient. Write your answer using only positive exponents.
a. $6^{12} \cdot 6^{-4}$
b. $\frac{0.7 n^{-4}}{n}$

Solution

a. $6^{12} \cdot 6^{-4}=6 \square$

$$
=6 \square
$$

b. $\frac{0.7 n^{-4}}{n}=0.7 n \square$ $=0.7 n \square$ $=\square$

Quotient of powers property
Product of powers property Add exponents. Subtract exponents. Definition of negative exponent
(Checkpoint Find the product or quotient. Write your answer using only positive exponents.
9. $(0.3)^{10} \cdot(0.3)^{-7}$
10. $\frac{7 d^{-4}}{d^{2}}$

Goal: Write numbers using powers of 10.

Power of 10	Decimal Equivalent
10^{4}	\square
10^{3}	\square
10^{2}	\square
10^{1}	\square
\square	\square
10^{-1}	\square
10^{-2}	\square
10^{-3}	\square
10^{-4}	\square

Example 1 Rewriting a Large Number as a Power of 10

There are $4,000,000,000$ bytes of memory in 4 gigabytes of RAM. Write this number using a power of 10 .
$4,000,000,000=\square \times \square$ Rewrite 4,000,000,000
\square
$=\square \times 10 \square$ as

Rewrite \qquad
as

1. A stadium has 90,000 seats.
2. A grain of sand weighs 0.000002 gram.

Example 2 Solving Problems Using Powers of 10

A bookstore has $\mathbf{4 0 , 0 0 0}$ books on its shelves. An online bookseller has 30,000,000 books available. About how many times greater is the number of books available online than the number of books in the store?

Solution

Write each number using the power of 10 of the number. Then divide the decimal part of the \square number by the decimal part of the \square number.

On shelves: $40,000=\square \times \square=\square \times 10 \square$
Online: 30,000,000 = \square \times \square
\square $\times 10 \square$
\square

$$
\div \square=
$$

\square Divide.
Answer: The number of books available online is about \square times greater than the number of books in the store.

Checkpoint Complete the following exercise.
3. A housefly weighs about 0.00002 pound. A dime weighs about 0.005 pound. How many times greater is the weight of the dime than the weight of the housefly?

Scientific Notation

Goal: Write numbers using scientific notation.

Using Scientific Notation

A number is written in scientific notation if it has the form $c \times 10^{n}$ where $1 \leq c<10$ and n is an integer.

Standard form	Product form	Scientific notation
725,000	$7.25 \times 100,000$	7.25×10^{5}
0.006	6×0.001	6×10^{-3}

Example 1 Writing Numbers in Scientific Notation

a. The average distance Mars is from the sun is $141,600,000$ miles. Write this number in scientific notation.

Standard form

Product form

Scientific notation
\square
b. The diameter of a quarter-ounce gold American Eagle coin is 0.022 meter. Write this number in scientific notation.

Standard form Product form
\square
\square

Scientific notation
\square

Example 2 Writing Numbers in Standard Form

a. Write 4.1×10^{4} in standard form.
Scientific notation
Product form

Standard form
\square
b. Write 7.23×10^{-6} in standard form.

Scientific notation Product form Standard form
\square
\square
\square
(v) Checkpoint Write the number in scientific notation.

1. $3,050,000,000$	2. 0.000082

Write the number in standard form.

3. 6.53×10^{7}	4. 9.2×10^{-4}

Example 3 Ordering Numbers Using Scientific Notation

Order $5.3 \times 10^{5}, \mathbf{5 2 0 , 0 0 0}$, and 7.5×10^{4} from least to greatest.

1. Write each number in scientific notation if necessary.
\square
$520,000=\square$
2. Order the numbers with different powers of 10.

3. Order the numbers with the same power of 10.
\square
4. Write the original numbers in order from least to greatest.
\square ; \square
\square

Checkpoint Order the numbers from least to greatest.
5. 23,$000 ; 3.4 \times 10^{3} ; 2.2 \times 10^{4}$
6. $4.5 \times 10^{-4} ; 0.000047 ; 4.8 \times 10^{-5}$

Oxygen Atoms The volume of one mole of oxygen atoms is about 1.736×10^{-5} cubic meters. Find the volume of 1.5×10^{4} moles of oxygen atoms.

Solution

Total volume	$=$Volume of one mole of oxygen atoms
	$=(\square)$Number of moles
	$=(\square)$Substitute values. Commutative and associative properties of multiplication
	$=\square \times(\square)$Multiply \square and \square.
	$=\square \times(\square)$Product of powers property
	$=\square \times \square$ Add exponents.

Answer: The volume of 1.5×10^{4} moles of oxygen atoms is about
\square \times \square cubic meters.

Checkpoint Find the product. Write your answer in scientific notation.

7. $\left(2.5 \times 10^{3}\right)\left(2 \times 10^{5}\right)$	$8 .\left(1.5 \times 10^{-2}\right)\left(4 \times 10^{-4}\right)$

Operations with Scientific Notation

Goal: Perform operations with numbers written in scientific notation.

Review Vocabulary

Scientific notation:

Example 1 Multiplying Numbers Written in Scientific Notation

Evaluate $\left(5.6 \times 10^{6}\right) \times\left(4.5 \times 10^{2}\right)$. Write your answer in scientific notation.

Solution
$\left(5.6 \times 10^{6}\right) \times\left(4.5 \times 10^{2}\right)$
$=(5.6 \times \square) \times\left(\square \times 10^{2}\right) \quad$ Commutative and associative properties of multiplication
$=\square \times 10^{\square}$
$=(\square \times 10 \square) \times 10 \square$
$=\square \times\left(10^{\square} \times 10^{\square}\right)$
$=\square \times 10^{\square}$

multiplication

Checkpoint Evaluate. Write your answer in scientific notation.

1. $\left(5.1 \times 10^{8}\right) \times\left(9 \times 10^{-3}\right)$	2. $\left(8.8 \times 10^{5}\right)\left(2.3 \times 10^{4}\right)$
3. $\frac{1.28 \times 10^{-5}}{3.2 \times 10^{2}}$	$4 . \frac{5.68 \times 10^{8}}{8 \times 10^{-1}}$

Example 2 Adding Numbers Written in Scientific Notation

Evaluate $\left(1.62 \times 10^{2}\right)+\left(7.78 \times \mathbf{1 0}^{\mathbf{3}}\right)$. Write your answer in scientific notation.

Solution

Rewrite 7.78×10^{3} so it has the same power of \square as \qquad
$7.78 \times 10^{3}=7.78 \times 10^{\square} \times 10^{\square}=\square \times 10^{\square}$ $\left(1.62 \times 10^{2}\right)+(\square \times 10 \square)$
$=(\square+\square) \times \square \quad$ Distributive property
$=\square \times \square$ Add.

$$
\begin{array}{ll}
=\left(\square \times 10^{\square}\right) \times 10^{\square} & \text { Rewrite } \square . \\
=\square \times 10^{\square} & \\
\end{array}
$$

Checkpoint Evaluate. Write your answer in scientific notation.
5. $\left(8.63 \times 10^{9}\right)+\left(1 \times 10^{7}\right)$
6. $\left(7 \times 10^{-2}\right)-\left(2 \times 10^{-3}\right)$

Give an example of the vocabulary word.

Prime number

Prime factorization

Monomial

Greatest common factor (GCF)

Composite number

Factor tree
\square
Common factor

Relatively prime

Equivalent fractions

Multiple

Least common multiple (LCM)

Simplest form

Common multiple

Least common denominator (LCD)

Scientific notation

Review your notes and Chapter 4 by using the Chapter Review on pages 212-215 of your textbook.

