Solving Inequalities Using Multiplication or Division

Goal: Solve inequalities using multiplication or division.

Multiplication Property of Inequality

Words Multiplying each side of an inequality by a *positive* number produces an equivalent inequality.

Multiplying each side of an inequality by a *negative* number and *reversing the direction of the inequality symbol* produces an equivalent inequality.

Algebra If a < b and c > 0, then $ac \bigcirc bc$.

If a < b and c < 0, then $ac \mid bc$.

The multiplication properties of inequality are also true for inequalities involving >, \le , and \ge .

Example 1 Solving an Inequality Using Multiplication

Solve
$$\frac{m}{-4} > 2$$
.

$$\frac{m}{-4} > 2$$

$$\boxed{ \left(\frac{m}{-4} \right) } \boxed{ } \boxed{ } \cdot 2$$

Write original inequality.

Multiply each side by Reverse inequality symbol.

Simplify.

Checkpoint Solve the inequality. Graph your solution.

1.
$$\frac{t}{5} < 3$$

2.
$$\frac{b}{-8} \le 1$$

Division Property of Inequality

Words Dividing each side of an inequality by a *positive* number produces an equivalent inequality.

Dividing each side of an inequality by a *negative* number and *reversing the direction of the inequality symbol* produces an equivalent inequality.

The division properties of inequality are also true for inequalities involving >, \le , and \ge .

Algebra If a < b and c > 0, then $\frac{a}{c} \left[\frac{b}{c} \right]$

If
$$a < b$$
 and $c < 0$, then $\frac{a}{c} \boxed{ } \frac{b}{c}$

Example 2 Solving an Inequality Using Division

Solve -11t ≥ 33.

$$-11t ≥ 33$$

Write original inequality.

$$\frac{-11t}{2} \boxed{} 33$$

Checkpoint Solve the inequality. Graph your solution.

3.
$$4y \le 36$$

4. -3x > 12

