3.3
 Solving Equations with Variables on Both Sides

Goal: Solve equations with variables on both sides.

Example 1 Solving an Equation with the Variable on Both Sides

Solve $5 n-7=9 n+21$.

$$
5 n-7=9 n+21 \quad \text { Write original equation. }
$$

$5 n-7-\square=9 n+21-\square$ Subtract \square from each side.

Simplify.
Subtract \square from each side.
Simplify.

$$
\square=n
$$

Divide each side by \square Simplify.

Answer: The solution is \square .

Example 2 An Equation with No Solution

Solve $3(2 x+1)=6 x$.

$3(2 x+1)$	$=6 x$		Write original equation.
\square	$=6 x$		Distributive property

Notice that this statement \square true because the number $6 x$

The statement \square true, so the equation has \square.

Solve $4(x+2)=4 x+8$.
$4(x+2)=4 x+8 \quad$ Write original equation.
$\square=4 x+8 \quad$ Distributive property
Notice that for all values of x, the statement $\square=4 x+8$ is
\square . The equation has \qquad

Checkpoint Solve the equation. Check your solution.

1. $3 n-6=5 n+20$	2. $12 x=4(3 x-1)$
3. $3(2 n+4)=2(3 n+6)$	$4.2 x+7=-2 x-13$

Geometry Find the perimeter of the square.

Solution

1. A square has four sides of equal length. Write an equation and solve for x.

$$
\begin{array}{rlrl}
\square & =\square & & \text { Write equation. } \\
\square-\square & =\square & \text { Subtract } \square \text { from each side. } \\
\square & =\square & & \text { Simplify. } \\
\square & =\square & & \text { Divide each side by } \square . \\
\square & =\square & & \\
x & =\square & & \text { Simplify. }
\end{array}
$$

2. Find the length of one side by substituting \square for x in either expression.

$$
3 x=3(\square)=\square
$$

Substitute for x and multiply.
3. To find the perimeter, multiply the length of one side by \qquad

$$
\square \cdot \square=\square
$$

Answer: The perimeter of the square is \square units.

Checkpoint Find the perimeter of the square.

5.

