3.2
 Solving Equations Having Like Terms and Parentheses

Goal: Solve equations using the distributive property.

Example 1 Writing and Solving an Equation

Baseball Game A group of five friends are going to a baseball game. Tickets for the game cost $\$ 12$ each, or $\$ 60$ for the group. The group also wants to eat at the game. Hot dogs cost $\$ 2.75$ each and bottled water costs $\$ 1.25$ each. The group has a total budget of $\$ 85$. If the group buys the same number of hot dogs and bottles of water, how many can they afford to buy?

Solution

Let n represent the number of hot dogs and the number of bottles of water. Then $2.75 n$ represents the cost of n hot dogs and $1.25 n$ represents the cost of n bottles of water. Write a verbal model.

Answer: The answer must be a whole number. Round down so the budget is not exceeded. The group can afford to buy \square hot dogs and \square bottles of water.

Solve the equation.
a. $-24=6(2-x)$
b. $-2(7-4 x)=10$

Solution

a.

b.

Write original equation.
Distributive property
Add \square to each side.
Simplify.

$x=\square$
Divide each side by \qquad

Simplify.

Solve $6 x-4(x-1)=14$.

$$
6 x-4(x-1)=14 \quad \text { Write original equation. }
$$

Distributive property
Combine like terms.

Subtract \square from each side. Simplify.

Divide each side by \qquad $x=\square \quad$ Simplify.

Checkpoint Solve the equation. Check your solution.

1. $-20=5(3-x)$	2. $4 y-14+3 y=28$
3. $-3(6-2 x)=12$	4. $5 x-2(x-3)=30$

Focus On

 Solving a Problem Arithmetically

 Solving a Problem Arithmetically and Algebraically

 and Algebraically}

Goal: Solve the same problem arithmetically and algebraically.

Example 1 Solving a Problem Arithmetically

The perimeter of the figure is 42 inches. Find x, the length of 4 of the hexagon's sides.

Solution

The perimeter is the sum of the four sides x plus twice the \qquad of the rectangle.

1. Multiply the length of the rectangle by \square
\square \times \square $=$ \square
2. Subtract twice the length of the rectangle from the \qquad
\square
3. The difference found in Step 2 represents the sum of the four sides x, so divide this difference by 4 to find \square
\square
Answer The length of each side x is \square

Example 2 Solving a Problem Algebraically
The perimeter of the figure is 42 inches. Find x, the length of 4 of the hexagon's sides.
 Solution

$$
\begin{aligned}
& P=2 I+4 x \quad \text { Write a formula for the } \\
& 42=2(\square)+4 x \quad \text { Substitute } 42 \text { for } P \text { and } \square \text { for } I \text {. } \\
& 42=\square+4 x \quad \text { Multiply. } \\
& \square=4 x \quad \text { Subtract } \\
& \text { from each side and simplify. } \\
& \frac{\square}{\square}=\frac{4 x}{\square} \\
& \square=x \\
& \text { Write a formula for the } \\
& \text { Substitute } 42 \text { for } P \text { and } \\
& \text { for } I . \\
& \text { Subtract } \\
& \text { Divide each side by } \\
& \text { Simplify. } \\
& \text { Answer: The length of each side } x \text { is }
\end{aligned}
$$

