The **slope** of a nonvertical line is the ratio of vertical change (*rise*) to horizontal change (*run*) between any two points on the line.

If a line in the coordinate plane passes through points (x_1, y_1) and (x_2, y_2) then the slope m is

$$m = \frac{\text{rise}}{\text{run}} = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}.$$

KEY CONCEPT

For Your Notebook

Slope of Lines in the Coordinate Plane

Negative slope: falls from left to right, as in line j

Positive slope: rises from left to right, as in line k

Zero slope (slope of 0): horizontal, as in line ℓ

Undefined slope: vertical, as in line n

Find the slope of line a and line d.

Solution

Slope of line *a*:
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 2}{6 - 8} = \frac{2}{-2} = -1$$

Slope of line **d**:
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 0}{6 - 6} = \frac{4}{0}$$
,

which is undefined.

GUIDED PRACTICE

for Example 1

Use the graph in Example 1. Find the slope of the line.

1. Line *b*

2. Line *c*

POSTULATE 17 Slopes of Parallel Lines

In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope.

Any two vertical lines are parallel.

POSTULATE 18 Slopes of Perpendicular Lines

In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1.

Horizontal lines are perpendicular to vertical lines.

EXAMPLE 2

Identify parallel lines

Find the slope of each line. Which lines are parallel?

Solution

Find the slope of k_1 through (-2, 4) and (-3, 0).

$$m_1 = \frac{0-4}{-3-(-2)} = \frac{-4}{-1} = 4$$

Find the slope of k_2 through (4, 5) and (3, 1).

$$m_2 = \frac{1-5}{3-4} = \frac{-4}{-1} = 4$$

Find the slope of k_3 through (6, 3) and (5, -2).

$$m_3 = \frac{-2-3}{5-6} = \frac{-5}{-1} = 5$$

▶ Compare the slopes. Because k_1 and k_2 have the same slope, they are parallel. The slope of k_3 is different, so k_3 is not parallel to the other lines.

Line h passes through (3,0) and (7,6). Graph the line perpendicular to h that passes through the point (2,5).

Solution

STEP 1 Find the slope m_1 of line h through (3, 0) and (7, 6).

$$m_1 = \frac{6-0}{7-3} = \frac{6}{4} = \frac{3}{2}$$

STEP 2 Find the slope m_2 of a line perpendicular to h. Use the fact that the product of the slopes of two perpendicular lines is -1.

$$\frac{3}{2} \cdot m_2 = -1$$
 Slopes of perpendicular lines $m_2 = \frac{-2}{3}$ Multiply each side by $\frac{2}{3}$.

STEP 3 Use the rise and run to graph the line.

