Apply Congruence and Triangles Pg 225

Define congruent figures:

Define corresponding parts:

Write a congruence statement for the triangles.

Name the corresponding angles.

Name the corresponding sides.

In the diagram, $DEFG \cong SPQR$.

- **a.** Find the value of *x*.
- **b.** Find the value of *y*.

In the diagram at the right, $ABGH \cong CDEF$.

 Identify all pairs of congruent corresponding parts. $H = \frac{(4x+5)^{\circ}}{6}$

- **2.** Find the value of *x* and find $m \angle H$.
- **3.** Show that $\triangle PTS \cong \triangle RTQ$.

THEOREM

For Your Notebook

THEOREM 4.3 Third Angles Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

Proof: Ex. 28, p. 230

If
$$\angle A \cong \angle D$$
, and $\angle B \cong \angle E$, then $\angle C \cong \angle F$.

EXAMPLE 4

Use the Third Angles Theorem

Find $m \angle BDC$.

Solution

 $\angle A \cong \angle B$ and $\angle ADC \cong \angle BCD$, so by the Third Angles Theorem, $\angle ACD \cong \angle BDC$. By the Triangle Sum Theorem, $m \angle ACD = 180^{\circ} - 45^{\circ} - 30^{\circ} = 105^{\circ}$.

ie

ļ,

▶ So, $m \angle ACD = m \angle BDC = 105^{\circ}$ by the definition of congruent angles.