9.1 Add and Subtract Polynomials

Goal • Add and subtract polynomials.

Your Notes

VOCABULARY	
Monomial	
Degree of a monomial	
Polynomial	
Degree of a polynomial	
Leading coefficient	
Binomial Trinomial	
IIIIIOIIIIai	

Example 1 Rewrite a polynomial

Write $7 + 2x^4 - 4x$ so that the exponents decrease from left to right. Identify the degree and leading coefficient of the polynomial.

Solution

Consider the degree of each of the polynomial's terms.

Degree is ___. Degree is ___. Degree is ___.

The polynomial can be written as _____. The greatest degree is ____, so the degree of the polynomial is $__$, and the leading coefficient is $__$.

Your Notes

Checkpoint Write the polynomial so that the exponents decrease from left to right. Identify the degree and leading coefficient of the polynomial.

1.
$$5x + 13 + 8x^3$$

2.
$$4y^4 - 7y^5 + 2y$$

Example 2 **Identify and classify polynomials**

Tell whether the expression is a polynomial. If it is a polynomial, find its degree and classify it by the number of terms. Otherwise, tell why it is not a polynomial.

	Expression	Is it a polynomial?	Classify by degree and number of terms
a.	-6		0 degree monomial
b.	$m^{-3} + 4$		
c.	$-h^3+4h^2$	Yes	
d.	$9-5x^4+3x$	Yes	
e.	$2w^3 + 4^w$		

Checkpoint Tell whether the expression is a polynomial. If it is a polynomial, find its degree and classify it by the number of terms. Otherwise, tell why it is not a polynomial.

3.
$$4x - x^7 + 5x^3$$

4.
$$v^3 + v^{-2} + 2v$$

Find the sum (a) $(4x^3 + x^2 - 5) + (7x + x^3 - 3x^2)$ and (b) $(x^2 + x + 8) + (x^2 - x - 1)$.

Solution

If a particular power of the variable appears in one polynomial but not the other, leave a space in that column, or write the term with a coefficient of 0.

- a. Vertical format: Align like $4x^3 + x^2 5$ terms in vertical columns. $+ x^3 - 3x^2 + 7x$
- b. Horizontal format: Group like terms and simplify.

$$(x^2 + x + 8) + (x^2 - x - 1)$$

= $(____) + (___) + (___)$

Example 4 Subtract polynomials

Find the difference (a) $(4z^2 - 3) - (-2z^2 + 5z - 1)$ and (b) $(3x^2 + 6x - 4) - (x^2 - x - 7)$.

Solution

a. $(4z^2 - 3)$ $4z^2 - 3$ $-(-2z^2 + 5z - 1)$ $2z^2 - 5z - 1$

Remember to multiply each term in the polynomial by -1 when you write the subtraction as addition.

b. $(3x^2 + 6x - 4) - (x^2 - x - 7)$ $= 3x^2 + 6x - 4$

Checkpoint Find the sum or difference.

Homework

5.
$$(3x^4 - 2x^2 - 1) + (5x^3 - x^2 + 9x^4)$$

6.
$$(3t^2 - 5t + t^4) - (11t^4 - 3t^2)$$