Goal • Factor trinomials of the form $x^2 + bx + c$.

Your Notes

FACTORING
$$x^2 + bx + c$$

Algebra

 $x^2 + bx + c = (x + p)(x + q)$ provided ____ = b

and ___ = c.

Example

 $x^2 + 6x + 5 = (___)(__)$ because ___ = 6

and ___ = 5.

Example 1 Factor when b and c are positive

Factor $x^2 + 10x + 16$.

Solution

Find two _____ factors of ____ whose sum is ___. Make an organized list.

Factors of	Sum of factors
16,	16 + =
8,	8 + =
4,	4 + =

The factors 8 and have a sum of , so they are the correct values of p and q.

$$x^2 + 10x + 16 = (x + 8)(\underline{\hspace{1cm}})$$

CHECK

$$(x + 8)(___) = ____$$
 Multiply.
= _____ Simplify.

Factor $a^2 - 5a + 6$.

Solution

Because b is negative and c is positive, p and q

Factors of	Sum of factors	
	+ () =	
	+ () =	

$$a^2 - 5a + 6 = (___)(__)$$

Example 3 Factor when b is positive and c is negative

Factor $y^2 + 3y - 10$.

Solution

Because c is negative, p and q must

Factors of	Sum of factors
_10,	-10 + =
10,	10 + =
_5,	-5 + =
5,	5 + =

$$y^2 + 3y - 10 = (___)(__)$$

Checkpoint Factor the trinomial.

1. $x + 7x + 12$	2. $x + 9x + 8$

Your Notes

Checkpoint Factor the trinomial.

3.
$$x + 12x + 27$$
 4. $x^2 - 9x + 20$

5.
$$y^2 + 4y - 21$$

6.
$$z^2 + 2z - 24$$

Example 4 Solve a polynomial equation

Solve the equation $x^2 + 7x = 18$.

$$x^2 + 7x = 18$$

$$x^2 + 7x = 18$$

$$x^2 + 7x - \underline{\hspace{1cm}} = 0$$

 $x^2 + 7x = 18$ Write original equation.

The solutions of the equation are _____.

Dimensions The bandage shown has an area of 16 square centimeters. Find the width of the bandage.

Solution

Step 1 Write an equation using the fact that the area of the bandage is 16 square centimeters.

Step 2 Solve the equation for w.

0 =		Write equation.
0 =		Factor right side.
	or	Zero-product property
	or	Solve for w.

The bandage cannot have a negative width, so the width

Checkpoint Complete the following exercises.

7. Solve the equation $s^2 - 12s = 13$.

Homework

8. What If? In Example 5, suppose the area of the bandage is 27 square centimeters. What is the width?