4.5 Graph Using **Slope-Intercept Form**

Goal • Graph linear equations using slope-intercept form.

Your Notes

VOCABULARY		
Slope-intercept form		
Parallel		

EINDING	THE CLADE		Y-INTERCEPT	OF A LINE
FINDING	INE SLUPE	: AND	1-INIERCEPI	UF A LINE

Words

A linear equation of the form y = mx + bis written in

is the slope where and is the *y*-intercept of the equation's graph.

Symbols

$$y = mx + b$$

Graph

Identify the slope and y-intercept of the line with the given equation.

a.
$$y = x + 3$$

b.
$$-2x + y = 5$$

Solution

- a. The equation is in the form . So, the slope of the line is ____, and the *y*-intercept is ____.
- b. Rewrite the equation in slope-intercept form by solving for .

$$-2x + y = 5$$
 Write original equation.
 $y =$ Subtract ____ from each side.

The line has a slope of and a y-intercept of .

Checkpoint Identify the slope and y-intercept of the line with the given equation.

1.
$$y = 4x - 1$$

2.
$$4x - 2y = 8$$

3.
$$4y = 3x + 16$$

4.
$$6x + 3y = -21$$

Graph the equation 4x + y = 2.

Solution

Step 1 Rewrite the equation in slope-intercept form.

Step 2 the slope and the *y*-intercept.

 $m = \underline{\hspace{1cm}}$ b =

Step 3 the point that corresponds to the y-intercept, ().

Step 4 Use the slope to locate a second point on the line. Draw a line through the two points.

- **Checkpoint** Complete the following exercise.
 - **5.** Graph the equation $-\frac{1}{2}x + y = 1$.

Your Notes

Example 3

Identify parallel lines

Determine which of the lines are parallel.

Solution

Find the slope of each line.

Line *b*:
$$m = \frac{ -4 }{ -2 } = \frac{ }{ } = _{ }$$

Line c:
$$m = \frac{ -2 }{ -6 } = \frac{ }{ } = \frac{ }{ }$$

have the same slope. They are parallel. and

Checkpoint Complete the following exercise.

6. Determine which lines are parallel.

Line a: through (2, 5) and (-2, 2)

Line *b*: through (4, 1) and (-3, -4)

Line c: through (2, 3) and (-2, 0)

Homework