Goal • Graph linear equations in a coordinate plane.

Your Notes

VOCABULARY

Solution of an equation in two variables

Graph of an equation in two variables

Linear equation

Standard form of a linear equation

Linear function

Example 1 Graph an equation

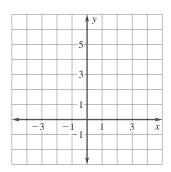
Graph the equation x + y = 4.

Solution

Step 1 Solve the equation for *y*.

$$x + y = 4$$

Step 2 Make a table.

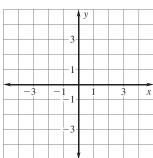

Choose a few values for x and find the values for y.

X	-2	-1	0	1	2
y					

Use convenient values for x when making a table. These should include a combination of negative values, zero, and positive values.

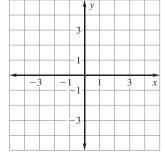
Your Notes

Step 3 Plot the points.


Step 4 Connect the points by drawing a line through them. Use arrows to indicate that the graph goes on without end.

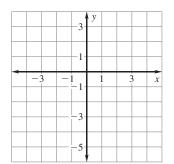
Example 2 Graph
$$y = b$$
 and $x = a$

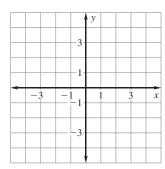
Graph (a) y = -3 and (b) x = 2.


Solution

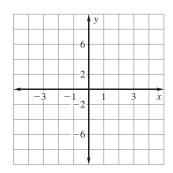
a. Regardless of the value of x, the value of y is always . The graph of y = -3 is a _____ line 3 units _____ the *x*-axis.

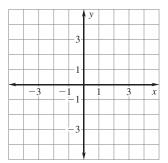
b. Regardless of the value of y, the value of x is always _____. The graph of x = 2 is a _____ line


2 units to the of the *y*-axis.


Your Notes

Checkpoint Graph the equation.


1.
$$y = 2x - 1$$

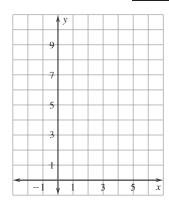

2.
$$x = 0.5$$

3.
$$y = -4x + 1$$

4.
$$y = -1.5$$

EQUATIONS OF HORIZONTAL AND VERTICAL LINES

- 1. The graph of y = b is a _____ line.
- 2. The line of graph y = b passes through the point _____.
- 3. The graph of x = a is a _____ line.
- 4. The line of graph x = a passes through the point _____.


Graph the function y = 2x + 2 with domain $x \ge 0$. Then identify the range of the function.

Solution

Step 1 Make a _____.

X	0	1	2	3	4
y					

Step 2 Plot the _____.

- Step 3 Connect the points with a _____ because the domain is ______.
- Step 4 Identify the range. From the graph, you can see that all points have a *y*-coordinate of ______, so the range of the function is _____.

Checkpoint Complete the following exercise.

5. Graph the function y = -x + 4 with domain $x \ge 0$. Then identify the range of the function.

Homework